Cho a, b ∉ Z, b > 0. So sánh 2 số hữu tỉ
\(\frac{a}{b}\) và \(\frac{a+2001}{b+2001}\)
Ta có: a(b+ 2001) = ab + 2001a
b(a+ 2001) = ab + 2001b
Vì b > 0 nên b + 2002 > 0
=> a(b + 2001 ) > b( a + 2001)
=> \(\frac{a}{b}\) > \(\frac{a+2001}{b+2001}\)
=> a(b + 2001 ) < b( a + 2001)
=> \(\frac{a}{b}\) < \(\frac{a+2001}{b+2001}\)
\(\frac{a}{b}\) = \(\frac{a+2001}{b+2001}\)
-- Mod Toán 7
Copyright © 2021 HOCTAP247