Bài tập 36 trang 56 SGK Toán 9 Tập 2

Lý thuyết Bài tập
Câu hỏi:

Bài tập 36 trang 56 SGK Toán 9 Tập 2

Giải các phương trình:

a) \((3x^2 -5x + 1)(x^2 - 4) = 0\)

b) \((2x^2 + x - 4)^2 - (2x - 1)^2 = 0\)

Với dạng bài 36 này, chúng ta sẽ gặp một vài dạng phương trình cần biến đổi để quy về phương trình bậc hai, cụ thể là:

Câu a:

\((3x^2 -5x + 1)(x^2 - 4) = 0\)

\(\Rightarrow 3x^2 -5x + 1 = 0 (1)\)

hoặc \(x^2-4=0(2)\)

Giải (1):

\(3x^2 -5x + 1 = 0\)

\(\Leftrightarrow x=\frac{5\pm \sqrt{13}}{6}\)

Giải (2):

\(x^2=4\Leftrightarrow x=\pm 2\)

Vậy phương trình có 4 nghiệm thỏa bài toán \(x=\begin{Bmatrix} \pm 2;\frac{5\pm \sqrt{13}}{6} \end{Bmatrix}\)

Câu b:

\((2x^2 + x - 4)^2 - (2x - 1)^2 = 0\)

\(\Leftrightarrow (2x^2+x-4+2x-1)(2x^2+x-4-2x+1)=0\)

\(\Leftrightarrow (2x^2+3x-5)(2x^2-x-3)=0\)

\(\Rightarrow 2x^2+3x-5=0 (1)\)

Hoặc \(2x^2-x-3=0 (2)\)

Giải (1):

\(2x^2+3x-5=0\)

\(\small \Leftrightarrow x=1\) hoặc \(x=-\frac{5}{2}\)

Giải (2):

\(2x^2-x-3=0\)

\(\Leftrightarrow x=-1\) hoặc \(x=\frac{3}{2}\)

Vậy nghiệm của hệ phương trình là: \(x=\begin{Bmatrix} \pm 1;-\frac{5}{2};\frac{3}{2} \end{Bmatrix}\)

 

-- Mod Toán 9

Copyright © 2021 HOCTAP247