A. \(S = \left| {\int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx} } } \right|\)
B. \(S = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx} } \)
C. \(S = - \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx} } \)
D. \(S = \int\limits_a^c {f\left( x \right)dx} \)
A. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = F\left( b \right) - F\left( a \right)\)
B. \(\int\limits_a^a {f\left( x \right){\rm{d}}x} = 0\)
C. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = - \int\limits_b^a {f\left( x \right){\rm{d}}x} \)
D. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = F\left( a \right) - F\left( b \right)\)
A. \(e-1\)
B. \(e+1\)
C. \(e\)
D. \(1-e\)
A. \(S = - \frac{{11}}{2}\)
B. \(S = \frac{{11}}{2}\)
C. \(S = \frac{7}{{12}}\)
D. \(S = \frac{{20}}{3}\)
A. \(I = \frac{{ - 29}}{2}\)
B. \(I = \frac{{ 29}}{2}\)
C. \(I = \frac{{ - 11}}{2}\)
D. \(I = \frac{{ 11}}{2}\)
A. \(f\left( x \right) = \frac{{{x^2}}}{2} + \cos x + \frac{1}{2}\)
B. \(f\left( x \right) = \frac{{{x^2}}}{2} - \cos x - 2\)
C. \(f\left( x \right) = \frac{{{x^2}}}{2} + \cos x\)
D. \(f\left( x \right) = \frac{{{x^2}}}{2} - \cos x + 2\)
A. 19
B. 9
C. 29
D. 5
A. \(V = 2\pi \sqrt 3 \)
B. \(V = 2\sqrt 3 \)
C. \(V=3\)
D. \(V=3\pi\)
A. \(\frac{9}{2}\)
B. \(\frac{3}{2}\)
C. \(\frac{{11}}{6}\)
D. 3
A. \(a+b=-6\)
B. \(a+b=-3\)
C. \(a+b=6\)
D. \(a+b=3\)
A. 13,1 m/s
B. 13,3 m/s
C. 13,2 m/s
D. 13 m/s
A. \(\frac{1}{2}{x^4} - 9x + C\)
B. \(4{x^4} - 9x + C\)
C. \(\frac{1}{4}{x^4} + C\)
D. \(4{x^3} - 9x + C\)
A. \(V = \int\limits_b^a {S\left( x \right){\rm{d}}x} \)
B. \(V = \pi \int\limits_a^b {S\left( x \right){\rm{d}}x} \)
C. \(V = \pi \int\limits_a^b {{S^2}\left( x \right){\rm{d}}x} \)
D. \(V = \int\limits_a^b {S\left( x \right){\rm{d}}x} \)
A. \(a+2b=1\)
B. \(a^3+b^3=28\)
C. \(ab=3\)
D. \(a-b=2\)
A. \(I=2\)
B. \(I=-1\)
C. \(I=1\)
D. \(I=0\)
A. \(\int {2\left( {{u^2} - 4} \right){\kern 1pt} {\rm{d}}u} \)
B. \(\int {\left( {{u^2} - 3} \right){\kern 1pt} {\rm{d}}u} \)
C. \(\int {2u\left( {{u^2} - 4} \right){\kern 1pt} {\rm{d}}u} \)
D. \(\int {\left( {{u^2} - 4} \right){\kern 1pt} {\rm{d}}u} \)
A. \(V = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \)
B. \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)
C. \(V = \int\limits_a^b {{f^2}\left( x \right)dx} \)
D. \(V = \pi \int\limits_a^b {f\left( x \right)dx} \)
A. \(I=-11\)
B. \(I=13\)
C. \(I=27\)
D. \(I=3\)
A. \(\int {f\left( {ax + b} \right){\rm{d}}x} = aF\left( {ax + b} \right) + C\)
B. \(\int {f\left( {ax + b} \right){\rm{d}}x} = \frac{1}{{a + b}}F\left( {ax + b} \right) + C\)
C. \(\int {f\left( {ax + b} \right){\rm{d}}x} = F\left( {ax + b} \right) + C\)
D. \(\int {f\left( {ax + b} \right){\rm{d}}x} = \frac{1}{a}F\left( {ax + b} \right) + C\)
A. \(ab = - \frac{1}{4}\)
B. \(ab = \frac{1}{4}\)
C. \(ab = - \frac{1}{8}\)
D. \(ab = \frac{1}{8}\)
A. \(I=-1\)
B. \(I=1\)
C. \(I=2\)
D. \(I=3\)
A. \(I = - \frac{1}{7}.\)
B. \(I = - \frac{1}{6}.\)
C. \(I = \frac{1}{7}.\)
D. \(I = \frac{1}{6}.\)
A. \(\frac{1}{3}\)
B. 7
C. 17
D. 9
A. \(V = {\pi ^2}{\rm{e}}\)
B. \(V = \pi \left( {{\rm{e}} - 2} \right)\)
C. \(V = {\rm{e}} - 2\)
D. \(V = \frac{{9\pi }}{4}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247