A. \(\frac{3}{{13}} + \frac{2}{{13}}i\)
B. \( - \frac{3}{{13}} + \frac{2}{{13}}i\)
C. \(\frac{3}{{13}} - \frac{2}{{13}}i\)
D. \( - \frac{3}{{13}} - \frac{2}{{13}}i\)
A. \(\left( { - \infty ;\, - 2} \right)\)
B. (- 2;0)
C. (0;2)
D. \(\left( {0;\, + \infty } \right)\)
A. A(2;2;1)
B. A(1;4;3)
C. A(- 4;2;7)
D. A(0;2;3)
A. xCĐ = 2
B. yCT = 2
C. yCT = 1
D. yCĐ = 0
A. 12
B. 30
C. 4
D. 20
A. \(D = R\backslash \left\{ {\frac{{k\pi }}{4}|k \in Z} \right\}\)
B. \(D = R\backslash \left\{ {k\pi ,\frac{\pi }{6} + k\pi |k \in Z} \right\}\)
C. \(D = \left\{ {k\pi |k \in Z} \right\}\)
D. \(D = R\backslash \left\{ {k\pi ,\frac{\pi }{2} + k\pi |k \in Z} \right\}\)
A. \(a+b=1\)
B. \(a+b=11\)
C. \(a + b = \frac{{44}}{3}\)
D. \(a + b = \frac{{4}}{3}\)
A. \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right|\)
B. \(\overrightarrow {AC} = \overrightarrow {BD} \)
C. \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) cùng hướng
D. \(\overrightarrow {AB} = \overrightarrow {CD} \)
A. 5
B. 50
C. 1
D. 122
A. \(y = - {x^3} - 3{x^2} + 2\)
B. \(y = - {x^4} + 2{x^2} + 2\)
C. \(y = {x^3} + 3{x^2} + 2\)
D. \(y = - {x^3} - 3{x^2} - 2\)
A. Là đường thẳng \(2x+y-8=0\)
B. Là đường thẳng \(10x+2y-8=0\)
C. Là đường thẳng \(10x-2y-8=0\)
D. Là đường thẳng \(10x+2y+8=0\)
A. \(\pi {a^2}\sqrt 6 \)
B. \(2\pi {a^2}\)
C. \(2\pi {a^2}\sqrt 6 \)
D. \(3\pi {a^2}\sqrt 6 \)
A. 3
B. 4
C. 2
D. 1
A. \({T_{\overrightarrow {AB} }}(D) = C\)
B. \({T_{\overrightarrow {CD} }}(B) = A\)
C. \({T_{\overrightarrow {AI} }}(I) = C\)
D. \({T_{\overrightarrow {ID} }}(I) = B\)
A. A(- 6;0;0)
B. A(0;- 3;0)
C. A(0;- 6;0)
D. A(0;0;1)
A. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx + \int\limits_0^1 {f\left( x \right)dx} } \)
B. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx} \)
C. \(S = \int\limits_0^{ - 2} {f\left( x \right)dx + \int\limits_0^1 {f\left( x \right)dx} } \)
D. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx - \int\limits_0^1 {f\left( x \right)dx} } \)
A. \(y = \log \left( {x - 1} \right).\)
B. \(y = \frac{{{x^2} + 3x + 2}}{{x - 2}}.\)
C. \(y = \frac{{\sqrt {x - 3} }}{{x - 2}}.\)
D. \(y = \frac{{2x + 3}}{{x - 2}}.\)
A. \(\lim \frac{{1 - {n^3}}}{{{n^2} + 2n}}\)
B. \(\lim \frac{{\left( {2n + 1} \right){{\left( {n - 3} \right)}^2}}}{{n - 2{n^3}}}\)
C. \(\lim \frac{{{2^n} + 1}}{{{{3.2}^n} - {3^n}}}\)
D. \(\lim \frac{{{2^n} + 3}}{{1 - {2^n}}}\)
A. - 14
B. 14i
C. - 14i
D. 14
A. \(\frac{{143}}{{280}}.\)
B. \(\frac{1}{{560}}.\)
C. \(\frac{1}{{16}}\)
D. \(\frac{1}{{28}}.\)
A. \({a^3}\)
B. \(\frac{{{a^3}\sqrt {11} }}{4}\)
C. \(\frac{{{a^3}}}{4}\)
D. \(\frac{{{a^3}\sqrt {11} }}{12}\)
A.
\(\left[ \begin{array}{l}
m = \frac{{17}}{4}\\
m = 4
\end{array} \right.\)
B. \(m = \frac{{17}}{4}\)
C.
\(\left[ \begin{array}{l}
m = \frac{{17}}{4}\\
m \le 4
\end{array} \right.\)
D.
\(\left[ \begin{array}{l}
m = \frac{{17}}{4}\\
m < 4
\end{array} \right.\)
A. \(\frac{{{a^3}\sqrt 3 }}{3}\)
B. \(\frac{{{a^3}\sqrt 3 }}{2}\)
C. \({a^3}\sqrt 3 \)
D. \(\frac{{{a^3}\sqrt 6 }}{2}\)
A.
\((d):\,\left\{ \begin{array}{l}
x = 4 + t\\
y = 3 + 5t\\
z = 2 + 2t
\end{array} \right.\)
B.
\((d):\,\left\{ \begin{array}{l}
x = t\\
y = 1 + 5t\\
z = - 3 + 2t
\end{array} \right.\)
C. \((d):\,\frac{{x - 4}}{2} = \frac{{y - 3}}{4} = \frac{{z - 2}}{1}\)
D. \((d):\,\frac{{x - 4}}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{2}.\)
A. \(\frac{V}{6}\)
B. \(\frac{V}{3}\)
C. V
D. \(\frac{V}{2}\)
A. \(y = \frac{{2x - 1}}{{x + 2}}\)
B. \(y = \frac{{x + 4}}{{2x + 1}}\)
C. \(y = \frac{{ - x - 3}}{{2x + 1}}\)
D. \(y = \frac{{ - x + 2}}{{2x + 1}}\)
A. \(k = \frac{5}{2}\)
B. \(k = \frac{1}{2}\)
C. k = 3
D. k = 4
A. Hình lăng trụ.
B. Hình chóp tứ giác.
C. Hình chóp ngũ giác.
D. Hình hộp chữ nhật.
A. S = 675m2
B. S = 100m2
C. S = 400m2
D. S = 120m2
A. \(4x\, - 3y\, + 4z + 2\, = \,0.\)
B. \(4x\, + 3y\, + 4z + 10\, = \,0\)
C. \(4x\, + 3y\, + 4z - 10\, = \,0\)
D. \(4x\, + 3y\, - 4z - 2\, = \,0\)
A. \({(1 + i)^8} = 16\)
B. \({(1 + i)^8} = 16i\)
C. \({(1 + i)^8} = - 16\)
D. \({(1 + i)^8} = - 16i\)
A. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 1\)
C. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 9\)
D. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 9\)
A. \(\frac{1}{3}\ln \left| {\frac{x}{{x + 3}}} \right| + C\)
B. \(\frac{1}{3}\ln \left| {\frac{{x - 3}}{x}} \right| + C\)
C. \(\frac{1}{3}\ln \left| {\frac{{x + 3}}{x}} \right| + C\)
D. \(\frac{1}{3}\ln \left| {\frac{x}{{x - 3}}} \right| + C\)
A. \({\log _b}c < {\log _b}a < 0\)
B. \({\log _b}c < 0 < {\log _b}a\)
C. \({\log _b}c > {\log _b}a > 0\)
D. \({\log _b}c > 0 > {\log _b}a\)
A. 0
B. 1
C. 2
D. 3
A. I = 2
B. I = 3
C. I = 4
D. I = 2
A. \(\int\limits_{ - 1}^2 {f\left( {2x} \right)dx = 2} \)
B. \(\int\limits_{ - 3}^3 {f\left( {x + 1} \right)dx = 2} \)
C. \(\int\limits_{ - 1}^2 {f\left( {2x} \right)dx = 1} \)
D. \(\int\limits_0^6 {\frac{1}{2}f\left( {x - 2} \right)dx = 1} \)
A. 0
B. 2
C. 1
D. 3
A. \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \)
B. \(S = \int\limits_a^b {f\left( x \right)dx} \)
C. \(S = \pi \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \)
D. \(S = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)
A. \(\frac{{a\sqrt 3 }}{2}\)
B. \(\frac{{a\sqrt 3 }}{6}\)
C. \(\frac{{3a}}{2}\)
D. \(\frac{{a}}{2}\)
A. \(4\pi {R^3}\sqrt 3 \)
B. \(2\pi {R^3}\sqrt 3 \)
C. \(\pi {R^3}\sqrt 3 \)
D. \(\frac{4}{3}\pi {R^3}\)
A. \(\left\{ { \pm 3;\,\,\frac{1}{2} + \frac{{\sqrt 3 i}}{2}} \right\}\)
B. \(\left\{ { \pm 3i;\,\,\frac{1}{2} \pm \frac{{\sqrt 3 i}}{2}} \right\}\)
C. \(\left\{ {3;\,\,\frac{1}{2} \pm \frac{{\sqrt 3 i}}{2}} \right\}\)
D. \(\left\{ { \pm 3i;\,\,\frac{1}{2} - \frac{{\sqrt 3 i}}{2}} \right\}\)
A. 3
B. 1
C. 2
D. 4
A. S = 9
B. S = 7
C. S = 2
D. S = 3
A. (3;5)
B. \(\left( {4; + \infty } \right)\)
C. (0;3)
D. \(\left( { - \infty ;0} \right)\)
A. \(m \le 0\)
B.
\(\left\{ \begin{array}{l}
m < 0\\
m \ne - \ln 5
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
m \ge 1\\
m \ne 5
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
m < 0\\
m \ne - \frac{1}{5}
\end{array} \right.\)
A. 8
B. 15
C. 18
D. 11
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247