Trong không gian với hệ toạ độ Oxyz, cho điểm N(1;1;1). Viết phương trình mặt phẳng (P) cắt các trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O sao cho N là tâm...

Câu hỏi :

Trong không gian với hệ toạ độ Oxyz, cho điểm N(1;1;1). Viết phương trình mặt phẳng (P) cắt các trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O sao cho N là tâm đường tròn ngoại tiếp tam giác ABC.

A. \(\left( P \right):x + y + z - 3 = 0\)

B. \(\left( P \right):x + y - z + 1 = 0\)

C. \(\left( P \right):x - y - z + 1 = 0\)

D. \(\left( P \right):x + 2y + z - 4 = 0\)

* Đáp án

A

* Hướng dẫn giải

Gọi \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) lần lượt là giao điểm của \(\left( P \right)\) với các trục \(Ox,Oy,Oz\)

\( \Rightarrow \)\(\left( P \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\left( {a,b,c \ne 0} \right)\)

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{N \in \left( P \right)}\\{NA = NB}\\{NA = NC}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 1}\\{\left| {a - 1} \right| = \left| {b - 1} \right|}\\{\left| {a - 1} \right| = \left| {c - 1} \right|}\end{array}} \right. \)

\(\Leftrightarrow a = b = c = 3 \Rightarrow x + y + z - 3 = 0\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 12 năm 2021

Số câu hỏi: 355

Copyright © 2021 HOCTAP247