A. \(\int f(x) d x=\frac{1}{2} \cos 2 x-\frac{1}{4} \cos 4 x+C\)
B. \(\int f(x) d x=\frac{1}{2} \cos 2 x+\frac{1}{4} \cos 4 x+C\)
C. \(\int f(x) d x=2 \cos ^{4} x+3 \cos ^{2} x+C\)
D. \(\int f(x) d x=3 \cos ^{4} x-3 \cos ^{2} x+C\)
A. \(\int f(x) d x=\frac{1}{6} \cos 3 x+\frac{1}{2} \sin x+C\)
B. \(\int f(x) d x=\frac{-2 \cos ^{3} x}{3}+\cos x+C\)
C. \(\int f(x) d x=\frac{1}{6} \cos 3 x-\frac{1}{2} \sin x+C\)
D. \(\int f(x) d x=\frac{\cos ^{3} x}{3}+\cos x+C\)
A. \(\int f(x) d x=\ln |\cos 2 x-1|+C\)
B. \(\int f(x) d x=\ln |\sin 2 x|+C\)
C. \(\int f(x) d x=-\ln |\sin x|+C\)
D. \(\int f(x) d x=\ln |\sin x|+C\)
A. \(\int f(x) d x=-\frac{\cos ^{3} x}{3}+C\)
B. \(\int f(x) d x=\frac{\cos ^{3} x}{3}+C\)
C. \(\int f(x) d x=-\frac{\sin ^{2} x}{2}+C\)
D. \(\int f(x) d x=\frac{\sin ^{2} x}{2}+C\)
A. \(\cot x-x^{2}+\frac{\pi^{2}}{16}\)
B. \(-\cot x+x^{2}-\frac{\pi^{2}}{16}\)
C. \(-\cot x+x^{2}\)
D. \(\cot x-x^{2}-\frac{\pi^{2}}{16}\)
A. \(\cot x-x^{2}+\frac{\pi^{2}}{16}\)
B. \(-\cot x+x^{2}-\frac{\pi^{2}}{16}\)
C. \(-\cot x+x^{2}\)
D. \(\cot x-x^{2}-\frac{\pi^{2}}{16}\)
A. \(5 \ln 2-6 \ln 3\)
B. \(1+2 \ln 2-6 \ln 3\)
C. \(3+5 \ln 2-7 \ln 3\)
D. \(1+25 \ln 2-16 \ln 3 \)
A. \(I=\int\limits_{1}^{0} u^{2} d u\)
B. \(I=-\int\limits_{1}^{0} u^{2} d u\)
C. \(I=\int\limits_{1}^{0} \frac{u^{2}}{2} d u \)
D. \(I=-\int\limits_{0}^{1} u^{2} d u\)
A. \(\frac{145}{12}\)
B. \(\pi\)
C. \(-\pi\)
D. 0
A. \(\frac{11}{12}\)
B. \(-\frac{145}{12}\)
C. \(-\frac{11}{12}\)
D. \(\frac{145}{12}\)
A. 3
B. 0
C. -2
D. -4
A. \(V = \pi \int\limits_a^b {f(x)dx} \)
B. \(V =\int\limits_a^b {{f^2}(x)dx} \)
C. \(V = \pi \int\limits_a^b {\left| {f(x)} \right|dx} \)
D. \(V = \pi \int\limits_a^b {{f^2}(x)dx} \)
A. \(\frac{\pi }{3}\left( {{e^2} - 1} \right)\)
B. \(\frac{\pi }{2}\left( {{e^2} - 2} \right)\)
C. \(\frac{\pi }{2}\left( {{e^2} - 1} \right)\)
D. \(\frac{\pi }{2}\left( {{e} - 1} \right)\)
A. \(\dfrac{{{\pi ^2}}}{2}\)
B. \(\dfrac{{{\pi ^2}}}{3}\)
C. \(\dfrac{{{\pi ^2}}}{4}\)
D. \(\dfrac{{{\pi }}}{2}\)
A. 4
B. 3
C. 5
D. 2
A. \(\dfrac{{32\pi }}{3}\) đvdt
B. \(\dfrac{{32\pi }}{5}\) đvdt
C. \(\dfrac{{256\pi }}{15}\) đvdt
D. \(\dfrac{{39\pi }}{5}\) đvdt
A. \( \overline {ON} = - 4\)
B. \( \overline {ON} = 3\)
C. \( \overline {ON} = 4\)
D. \( \overline {ON} = 2\)
A. (2;3;5).
B. (2;−3;−5).
C. (−2;3;5).
D. (−2;−3;5).
A. N(−1;−1;0)
B. N(1;−1;0)
C. N(−1;1;0)
D. N(0;0;0)
A. Q(0;−10;0)
B. P(10;0;0)
C. N(0;0;−10)
D. M(−10;0;10)
A. x + y - 2 = 0
B. x - y + 2 = 0
C. x + y + 2 = 0
D. x - y - 2 = 0
A. x - 4y - 7z - 16 = 0
B. x - 4y + 7z + 16 = 0
C. x + 4y + 7z + 16 = 0
D. x + 4y - 7z - 16 = 0
A. Hai mặt phẳng song song có chung vô số pháp vectơ.
B. Đường thẳng (D) cùng phương với giá (d) của pháp vectơ \(\overrightarrow n \) của mặt phẳng (P) thì (D) vuông góc với (P).
C. Cho đường thẳng (d) song song với mặt phẳng (P), nếu \(\overrightarrow n \) có giá giá vuông góc với (d) thì \(\overrightarrow n \) là một pháp vectơ của (P).
D. Hai câu A và B.
A. Hai mặt phẳng (P) và (Q) có cùng một pháp vectơ thì chúng song song.
B. Một mặt phẳng có một pháp vectơ duy nhất.
C. Một mặt phẳng được xác định nếu biết một điểm và một pháp vectơ của nó.
D. Hai câu A và B.
A. Nếu \(\overrightarrow n \) vuông góc với \(\overrightarrow a\) và \(\overrightarrow b\) thì \(\overrightarrow n \) là một pháp vectơ của (P).
B. Nếu \(\overrightarrow n \) có giá vuông góc với (P) thì \(\overrightarrow n \) là một pháp vectơ của (P).
C. \([\,\overrightarrow a \,\,,\,\,\overrightarrow b \,\,]\) là một pháp vectơ của (P).
D. Ba câu A, B và C.
A. \((x+1)^{2}+(y+2)^{2}+(z-4)^{2}=9\)
B. \((x-1)^{2}+(y-2)^{2}+(z+4)^{2}=3\)
C. \((x-1)^{2}+(y-2)^{2}+(z+4)^{2}=9\)
D. \((x-1)^{2}+(y-2)^{2}+(z-4)^{2}=9\)
A. \((x+1)^{2}+(y-2)^{2}+z^{2}=100\)
B. \((x-1)^{2}+(y+2)^{2}+z^{2}=25\)
C. \((x+1)^{2}+(y-2)^{2}+z^{2}=25\)
D. \((x-1)^{2}+(y+2)^{2}+z^{2}=100\)
A. \((x-1)^{2}+(y-2)^{2}+(z+3)^{2}=53\)
B. \((x+1)^{2}+(y+2)^{2}+(z-3)^{2}=53\)
C. \((x-1)^{2}+(y-2)^{2}+(z-3)^{2}=53\)
D. \((x+1)^{2}+(y+2)^{2}+(z+3)^{2}=53\)
A. \((x-1)^{2}+(y-2)+(z-3)^{2}=1\)
B. \((x+1)^{2}+(y+2)^{2}+(z+3)^{2}=1\)
C. \((x-1)^{2}+(y-2)^{2}+(z-3)^{3}=1\)
D. \(x^{2}+y^{2}+z^{2}-2 x-4 y-6 z+13=0\)
A. \({{\left( x+2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=40\)
B. \({{\left( x+2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=82\)
C. \({{\left( x+2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=58\)
D. \({{\left( x+2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=90\)
A. \(\frac{x-3}{4}=\frac{y+2}{-2}=\frac{z-1}{-1}\)
B. \(\frac{x-3}{4}=\frac{y-2}{-2}=\frac{z+1}{-1}\)
C. \(\frac{x+3}{1}=\frac{y-2}{1}=\frac{z+1}{2}\)
D. \(\frac{x-3}{1}=\frac{y+2}{1}=\frac{z-1}{2}\)
A. \(\text{ }\!\!\Delta\!\!\text{ :}\left\{ \begin{array} {} x=1+3t \\ {} y=-1 \\ {} z=t \\ \end{array} \right.\)
B. \(\text{ }\!\!\Delta\!\!\text{ :}\left\{ \begin{array} {} x=1+3t \\ {} y=1 \\ {} z=-t \\ \end{array} \right.\)
C. \(\text{ }\!\!\Delta\!\!\text{ :}\left\{ \begin{array} {} x=1-3t \\ {} y=-1 \\ {} z=-t \\ \end{array} \right.\)
D. \(\text{ }\!\!\Delta\!\!\text{ :}\left\{ \begin{array} {} x=1+3t \\ {} y=-1 \\ {} z=-t \\ \end{array} \right.\)
A. \(\left( S \right):{{\left( x+\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\)
B. \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\)
C. \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y+\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\)
D. \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z+\frac{10}{3} \right)}^{2}}=1\)
A. \({{\left( x-2 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{z}^{2}}=10\)
B. \({{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{z}^{2}}=100\)
C. \({{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{z}^{2}}=10\)
D. \({{\left( x-2 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{z}^{2}}=100\)
A. \({{x}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=9\)
B. \({{x}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=3\)
C. \({{x}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=3\)
D. \({{x}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=9\)
A. \(\sqrt{11}\over 11\)
B. 11
C. 1
D. \(\sqrt{11}\)
A. \(\vec p=(0;45;-60)\)
B. \(\vec p=(45;-60;0)\)
C. \(\vec p=(0;9;-12)\)
D. \(\vec p=(9;-12;0)\)
A. \(\sqrt{21}\)
B. \(\sqrt{21}\over 3\)
C. \(2\sqrt{21}\)
D. \(\sqrt{42}\)
A. \(S=\sqrt{62}\)
B. S = 12
C. \(S=\sqrt6\)
D. \(S=2\sqrt{62}\)
A. 3x + 6y + 2z + 18 = 0
B. 6x + 3y + 2z - 18 = 0
C. 2x + y + 3z - 9 = 0
D. 6x + 3y + 2z + 9 = 0
A. \(3\over2 \)
B. \(5\over6 \)
C. \(5\over3\)
D. \(6\over5\)
A. \(2x - 4y + 4z - 5 = 0\) hoặc \(2x - 4y + 4z - 13 = 0\).
B. x - 2y + 2z - 25 = 0
C. x - 2y + 2z - 7 = 0
D. \(x - 2y + 2z - 25 = 0\) hoặc \(x - 2y + 2z - 7 = 0\).
A. 7x - 2y - 4z = 0
B. 7x - 2y - 4z + 3 = 0
C. 2x + y + 3z + 3 = 0
D. 14x - 4y - 8z + 3 = 0
A. 11m
B. 12m
C. 13m
D. 14m
A. \(I = - \dfrac{1}{2}{\sin ^2}x + \sin x + C\).
B. \(I = \dfrac{1}{2}{\sin ^2}x + \sin x + C\).
C. \(I = {\sin ^2}x - \sin x + C\)
D. \(I = - \dfrac{1}{2}{\sin ^2}x - \sin x + C\).
A. \(\int\limits_0^1 {f(x)\,dx \ge 0} \).
B. \(\int\limits_0^1 {g(x)\,dx \le 0} \).
C. \(\int\limits_0^1 {g(x)\,dx \ge \int\limits_0^1 {f(x)\,dx} } \).
D. \(\int\limits_0^1 {f(x)\,dx \le 0} \).
A. I = 1
B. Cả ba phương án đều sai.
C. I = 2 – e
D. I = 3 – e
A. \( - {e^{3\cos x}} + C\).
B. \({e^{3\cos x}} + C\).
C. \( - \dfrac{{{e^{3\cos x}}}}{3} + C\).
D. \(\dfrac{{{e^{3\cos x}}}}{3} + C\).
A. F(x) –C không phải là nguyên hàm của f(x) với mọi số thực C.
B. F(x) +2C không phải là nguyên hàm của f(x) với mọi số thực C.
C. CF(x) không phải là nguyên hàm của f(x) với mọi số thực \(C \ne 1\).
D. Cả 3 phương án đều sai.
A. \(\int {\dfrac{{dx}}{{{x^\alpha }}} = \dfrac{{{x^{1 - \alpha }}}}{{1 - \alpha }} + C\,,\forall \alpha \in R}\)
B. \(\int {\dfrac{{dx}}{x} = \ln |Cx|}\) với C là hằng số
C. \(\int {\dfrac{{dx}}{{\left( {x + a} \right)\left( {x + b} \right)}} = \dfrac{1}{{a - b}}\ln \left| {\dfrac{{x + b}}{{x + a}}} \right| + C} \) với mọi số thực a, b.
D. Cả 3 phương án trên đều sai.
A. \({x^2} - 3x - \ln |x - 2| + C\).
B. \({x^2} - 3x + \ln |x - 2| + C\).
C. \(2{x^2} - 3x - \ln |x - 2| + C\)
D. \(2{x^2} - 3x + \ln |x - 2| + C\).
A. \(I = \left( {1 - \dfrac{\pi }{2}} \right)\cos a + \sin a\)
B. \(I = \left( {1 - \dfrac{\pi }{2}} \right)\cos a - \sin a\)
C. \(I = \left( {\dfrac{\pi }{2} - 1} \right)\cos a + \sin a\)
D. \(I = \left( {1 + \dfrac{\pi }{2}} \right)\cos a - \sin a\)
A. \(\dfrac{{{3^{{x^2}}}}}{2}\ln 3 + C\)
B. \({3^{{x^2}}} + C\)
C. \(\dfrac{{{3^{{x^2}}}}}{{2\ln 3}} + C\)
D. \(\dfrac{{{3^{{x^2}}}}}{2} + C\)
A. 17
B. \(\dfrac{{17}}{4}\)
C. \(\dfrac{{15}}{4}\)
D. 4
A. \(F(x) = \cot x + \sqrt 3\)
B. \(F(x) = - \cot x + \sqrt 3\)
C. \(F(x) = \dfrac{1}{{\sin x}} + \sqrt 3\)
D. \(F(x) = - \dfrac{1}{{\sin x}} + \sqrt 3\)
A. \(f(t) = 2{t^2} + 2t\)
B. \(f(t) = 2{t^2} - 2t\)
C. \(f(t) = {t^2} + t\)
D. \(f(t) = {t^2} - t\)
A. \(\int {f(ax + b) = \dfrac{1}{a}F(ax + b) + C}\)
B. \(\int {f(ax + b) = aF(ax + b) + C}\)
C. \(\int {f(ax + b) = F(ax + b) + C}\)
D. \(\int {f(ax + b) = aF(x) + b + C}\)
A. \(I = f(x).g'(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f'(x).g(x)\,dx}\)
B. \(I = f(x).g(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f(x).g(x)\,dx} \)
C. \(I = f(x).g(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f'(x).g(x)\,dx}\)
D. \(I = f(x).g'(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f(x).g'(x)\,dx}\)
A. 5
B. -5
C. 9
D. -9
A. \(\int\limits_2^4 {f(t)\,dt = 3}\)
B. \(\int\limits_2^4 {f(t)\,dt = - 3}\)
C. \(\int\limits_2^4 {f(t)\,dt = 6}\)
D. \(\int\limits_2^4 {f(t)\,dt = 0}\)
A. \(\int {f(x)\,dx = \dfrac{{{{84}^x}}}{{\ln 84}} + C} \).
B. \(\int {f(x)\,dx = \dfrac{{{2^{2x}}{3^x}{7^x}}}{{\ln 4.\ln 3.\ln 7}} + C} \).
C. \(\int {f(x)\,dx = {{84}^x} + C} \).
D. \(\int {f(x)\,dx = {{84}^x}\ln 84 + C} \).
A. \(\dfrac{{{x^3}}}{3} - 2x - \dfrac{1}{x} + C\).
B. \(\dfrac{{{x^3}}}{3} - 2x + \dfrac{1}{x} + C\).
C. \(\dfrac{{{x^3}}}{3} + \dfrac{1}{x} + C\).
D. \(\dfrac{{{x^3}}}{2} + 2x - \dfrac{1}{x} + C\).
A. 1
B. \(\dfrac{1}{6}\)
C. \(\dfrac{5}{6}\)
D. \(\dfrac{1}{3}\)
A. \(\cot x - \tan x\).
B. \( - \cot x + \tan x\).
C. \( - \cot x - \tan x\).
D. \(\cot x + \tan x\).
A. \(\ln \dfrac{{\sqrt 2 }}{2}\).
B. \(\ln \dfrac{{\sqrt 3 }}{2}\).
C. \( - \ln \dfrac{{\sqrt 2 }}{2}\).
D. \( - \ln \dfrac{{\sqrt 3 }}{2}\).
A. \(\pi e\).
B. \(2\pi {e^2}\)
C. \(4\pi \)
D. \(16\pi \).
A. 4
B. 2
C. 3
D. -1
A. \(I = 3e - 1 + 2\int\limits_0^1 {{e^x}\,dx} \).
B. \(I = 3e - 1 - 2\int\limits_0^1 {{e^x}\,dx} \).
C. \(I = 3e - 2\int\limits_0^1 {{e^{x\,}}\,dx} \).
D. \(I = 3e + 2\int\limits_0^1 {{e^x}\,dx} \).
A. x - 2y + 1 = 0
B. y - 2 = 0
C. y + 1 = 0
D. y + 2 = 0
A. x + 3z = 0
B. x + 2z = 0
C. x - 3z = 0
D. x = 0
A. \(\left( P \right):x + 2y + 3z - 6 = 0\)
B. \(\left( P \right):x + 2y + z - 2 = 0\)
C. \(\left( P \right):3x + 2y + 2z - 4 = 0\)
D. \(\left( P \right):x - 2y + 3z - 6 = 0\)
A. \(\left( P \right):2x + 3y - z - 4 = 0\)
B. \(\left( P \right):x + 2y - z - 2 = 0\)
C. \(\left( P \right):x - 2y - z + 2 = 0\)
D. \(\left( P \right):3x + y + 2z - 6 = 0\)
A. \(\left( P \right):x + y + z - 3 = 0\)
B. \(\left( P \right):x + y - z + 1 = 0\)
C. \(\left( P \right):x - y - z + 1 = 0\)
D. \(\left( P \right):x + 2y + z - 4 = 0\)
A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 3.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 9.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 9.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 36.\)
A. \(\left( {{P_1}} \right):4x + 2y + 7z - 15 = 0;\)\(\,\left( {{P_2}} \right):x - 5y - z + 10 = 0\).
B. \(\left( {{P_1}} \right):6x - 4y + 7z - 5 = 0;\)\(\,\left( {{P_2}} \right):3x + y + 5z + 10 = 0\).
C. \(\left( {{P_1}} \right):6x - 4y + 7z - 5 = 0;\)\(\,\left( {{P_2}} \right):2x + 3z - 5 = 0\).
D. \(\left( {{P_1}} \right):3x + 5y + 7z - 20 = 0;\)\(\,\left( {{P_2}} \right):x + 3y + 3z - 10 = 0\).
A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 24.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 24.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 18\)
D. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 18.\)
A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 72.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 36.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 66.\)
D. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 46.\)
A. \({\left( {x - 3} \right)^2} + {\left( {y - \sqrt 3 } \right)^2} + {\left( {z + 7} \right)^2} = 61.\)
B. \({\left( {x - 3} \right)^2} + {\left( {y - \sqrt 3 } \right)^2} + {\left( {z + 7} \right)^2} = 58.\)
C. \({\left( {x + 3} \right)^2} + {\left( {y + \sqrt 3 } \right)^2} + {\left( {z - 7} \right)^2} = 58.\)
D. \({\left( {x - 3} \right)^2} + {\left( {y - \sqrt 3 } \right)^2} + {\left( {z + 7} \right)^2} = 12.\)
A. \({\left( {x + \sqrt 5 } \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 9} \right)^2} = 86.\)
B. \({\left( {x - \sqrt 5 } \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 9} \right)^2} = 14.\)
C. \({\left( {x - \sqrt 5 } \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 9} \right)^2} = 90.\)
D. \({\left( {x + \sqrt 5 } \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 9} \right)^2} = 90.\)
A. \(2\sqrt {83} \).
B. \(\sqrt {83} \).
C. 83
D. \(\dfrac{{\sqrt {83} }}{2}\).
A. \(I = \ln |x - 3| - \dfrac{{16}}{{x - 3}} + C\)
B. \(I = \dfrac{1}{5}\ln |x - 3| - \dfrac{{16}}{{x - 3}} + C\)
C. \(I = \ln |x - 3| + \dfrac{{16}}{{x - 3}} + C\)
D. \(I = 5\ln |x - 3| - \dfrac{{16}}{{x - 3}} + C\)
A. \(\sqrt 3 - \dfrac{\pi }{3}\)
B. \(\dfrac{\pi }{3} - 3\)
C. \(\dfrac{{{\pi ^2}}}{3} - \pi \sqrt 3 \)
D. \(\pi \sqrt 3 - \dfrac{{{\pi ^2}}}{3}\)
A. \(I = \sin \left( {4x + 2} \right) + C\)
B. \(I = - \sin \left( {4x + 3} \right) + C\)
C. \(I = \dfrac{1}{4}\sin \left( {4x + 3} \right) + C\)
D. \(I = 4\sin \left( {4x + 3} \right) + C\)
A. F’(x) = x.
B. F’(x) = 1.
C. F’(x) = x - 1.
D. F’(x) = \(\dfrac{{{x^2}}}{2} - \dfrac{1}{2}\).
A. \(2\ln |x + 1| + \dfrac{{2{x^2} + 2x + 4}}{{x + 1}}\).
B. \(\ln \left( {x + 1} \right) + \dfrac{{2{x^2} + 2x + 4}}{{x + 1}}\).
C. \(\ln {\left( {x + 1} \right)^2} + \dfrac{{2{x^2} + 3x + 5}}{{x + 1}}\).
D. \(\dfrac{{2{x^2} + 3x + 5}}{{x + 1}} + \ln {e^2}{\left( {x + 1} \right)^2}\).
A. \(\dfrac{1}{{20}}{\left( {5x + 3} \right)^4}\)
B. \(\dfrac{1}{{20}}{\left( {5x + 3} \right)^4} + C\)
C. \(\dfrac{1}{4}{\left( {5x + 3} \right)^4} + C\)
D. \(\dfrac{1}{5}{\left( {5x + 3} \right)^4} + C\)
A. Nếu V1 = V2 thì chắc chắn suy ra \(f(x) = g(x),\forall x \in [a;b]\).
B. S1>S2.
C. V1 > V2.
D. Cả 3 phương án trên đều sai.
A. 27ln2.
B. 72ln27
C. 3ln72.
D. Một kết quả khác.
A. \(\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\sin }^2}x}}} = - \cot x\left| {\dfrac{\pi }{4} - \dfrac{\pi }{4} = - 2} \right.\)
B. \(\int\limits_2^1 {dx} = 1\).
C. \(\int\limits_{ - e}^e {\dfrac{{dx}}{x} = ln|2e|} - \ln | - e| = \ln 2\).
D. Cả 3 phương án đều sai.
A. \( - \dfrac{1}{4}\sin \left( {\pi - 2a} \right) - \sin 2a + \pi - 4a\).
B. \( \dfrac{1}{4}\left( {\sin \left( {\pi - 2a} \right) - \sin 2a + \pi - 4a} \right)\).
C. \( - \dfrac{1}{4}\left( {\sin \left( {\pi - 2a} \right) - \sin 2a + \pi - 4a} \right)\).
D. 0
A. 2
B. 4
C. 3
D. 5
A. \(f(x) = {\pi ^x}\ln x\).
B. \(f(x0 = - {\pi ^x}\ln x\).
C. \(f(x) = \dfrac{{{\pi ^x}}}{{\ln \pi }}\).
D. \(f(x) = \dfrac{{{\pi ^x}}}{{\ln x}}\).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{2}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
D. \(F(x) = 2{e^x} + {x^2} - \dfrac{1}{2}\).
A. \(F(3) = \dfrac{1}{2}\).
B. \(F(3) = \ln \dfrac{3}{2}\).
C. F(3) = ln2.
D. F(3) = ln2 + 1.
A. \(f(x) = {x^3} - 2\sqrt x - \dfrac{1}{x} - x\).
B. \(f(x) = {x^3} - \sqrt x - \dfrac{1}{{\sqrt x }} - x\).
C. \(f(x) = {x^3} - 2\sqrt x + \dfrac{1}{x}\).
D. \(f(x{x^3} - \dfrac{1}{2}\sqrt x - \dfrac{1}{x} - x\).
A. \(\dfrac{9}{2}\).
B. 3
C. \(\dfrac{9}{4}\)
D. \(\dfrac{7}{2}\).
A. \(\dfrac{3}{2}\)
B. \( - \dfrac{3}{2}\)
C. \(\dfrac{5}{2}\)
D. \( - \dfrac{5}{2}\)
A. \(I = - \dfrac{1}{5}\cos 5x + C\).
B. \(I = \dfrac{1}{5}\cos 5x + C\).
C. \(I = - \dfrac{1}{8}\cos 4x - \dfrac{1}{{12}}\cos 6x + C\).
D. \(I = \dfrac{1}{8}\cos 4x + \dfrac{1}{{12}}\cos 6x + C\).
A. \(e + \dfrac{1}{e} - 2\)
B. 0
C. \(2\left( {e + \dfrac{1}{e} - 2} \right)\).
D. \(e + \dfrac{1}{e}\).
A. \({x^2}\left( {1 + \dfrac{3}{4}{x^2}} \right) + C\).
B. \(\dfrac{{{x^2}}}{2}\left( {2x + {x^3}} \right) + C\).
C. \({x^2}\left( {2 + 6x} \right) + C\).
D. \({x^2} + \dfrac{3}{4}{x^4}\).
A. \(\cos \left( {\dfrac{\pi }{3} - 2x} \right) + C\).
B. \( - \dfrac{1}{2}\cos \left( {\dfrac{\pi }{3} - 2x} \right) + C\).
C. \(\dfrac{1}{2}\cos \left( {\dfrac{\pi }{3} - 2x} \right) + C\).
D. \( - \cos \left( {\dfrac{\pi }{3} - 2x} \right) + C\).
A. \(2\sqrt x + 2\ln \left( {\sqrt x + 1} \right) + C\).
B. \(2 - 2\ln \left( {\sqrt x + 1} \right) + C\).
C. \(2\sqrt x - 2\ln \left( {\sqrt x + 1} \right) + C\).
D. \(2 + 2\ln \left( {\sqrt x + 1} \right) + C\).
A. S= ln 2 – 1
B. S = ln 4 – 1
C. S =ln 4 + 1
D. S = ln 2 + 1
A. m = 1, m = - 6
B. m = - 1 , m = - 6
C. m = - 1, m = 6
D. m = 1, m = 6
A. \(P = - \dfrac{3}{2}\).
B. \(P = \dfrac{3}{2}\).
C. \(P = - \dfrac{5}{3}\).
D. \(P = \dfrac{5}{3}\).
A. \(d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)
B. \(d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\overrightarrow {u'} }}\)
C. \(d\left( {A,d'} \right) = \frac{{\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]}}{{\overrightarrow {u'} }}\)
D. \(d\left( {A,d'} \right) = \frac{{\left| {\overrightarrow {AM'} .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)
A. \(\left( {3;\dfrac{8}{3}; - \dfrac{8}{3}} \right).\)
B. \(\left( {3;\dfrac{8}{3};\dfrac{8}{3}} \right).\)
C. \(\left( {3;3; - \dfrac{8}{3}} \right).\)
D. \(\left( {1;2;\dfrac{1}{3}} \right).\)
A. \(\left( {1;0;0} \right).\)
B. \(\left( {0;0;1} \right).\)
C. \(\left( {0;1;0} \right).\)
D. \(\left( {0;0;0} \right).\)
A. 43
B. 44
C. 42
D. 45
A. D(0;1;3)
B. D(0;3;1)
C. D(0; - 3;1)
D. D(0;3; - 1)
A. \(\cos \left( {\overrightarrow b ,\overrightarrow c } \right) = \dfrac{{\sqrt 6 }}{3}.\)
B. \(\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0 .\)
C. \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng.
D. \(\overrightarrow a .\overrightarrow b = 1.\)
A. \(I(\dfrac{8}{3};\dfrac{5}{3};\dfrac{8}{3})\).
B. \(I(\dfrac{5}{3};\dfrac{8}{3};\dfrac{8}{3})\).
C. \(I( - \dfrac{5}{3};\dfrac{8}{3};\dfrac{8}{3}).\)
D. \(I(\dfrac{8}{3};\dfrac{8}{3};\dfrac{5}{3})\).
A. \(\overrightarrow {SI} = \dfrac{1}{2}\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right).\)
B. \(\overrightarrow {SI} = \dfrac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right).\)
C. \(\overrightarrow {SI} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} .\)
D. \(\overrightarrow {SI} + \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow 0 .\)
A. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 20.\)
B. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 40.\)
C. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 52.\)
D. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 56.\)
A. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 20.\)
B. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 40.\)
C. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 52.\)
D. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 56.\)
A. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)
A. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)
D. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 4.\)
A. \(\sqrt 7 \pi .\)
B. \(2\sqrt 7 \pi .\)
C. \(7\pi .\)
D. \(14\pi .\)
A. \(M\left( {0; - 3;0} \right)\).
B. \(M\left( {0;3;0} \right)\).
C. \(M\left( {0; - 2;0} \right)\).
D. \(M\left( {0;1;0} \right)\).
A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \)
B. \(V = \pi \int\limits_0^1 {{y^2}\,dy}\)
C. \(V = \pi \int\limits_0^1 {{y^4}\,dy}\)
D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy}\)
A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).
B. \(I = 2004\int\limits_0^\pi {\sqrt {1 - \cos 2x} } \,dx\).
C. \(I = 4008\sqrt 2 \).
D. \(I = 2004\sqrt 2 \int\limits_0^\pi {\sin x\,dx} \).
A. \(4\cos x + \ln x + C\).
B. \(4\cos x + \dfrac{1}{x} + C\).
C. \(4\sin x - \dfrac{1}{x} + C\).
D. \(4\sin x + \dfrac{1}{x} + C\).
A. \(\int\limits_a^c {f(x)\,dx = \int\limits_a^b {f(x)\,dx + \int\limits_b^c {f(x)\,dx} } } \).
B. \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx - \int\limits_b^c {f(x)\,dx} } } \).
C. \(\int\limits_a^b {f(x)\,dx = \int\limits_b^a {f(x)\,dx + \int\limits_a^c {f(x)\,dx} } } \).
D. \(\int\limits_a^b {cf(x)\,dx = - c\int\limits_b^a {f(x)\,dx} } \)
A. \( - {\sin ^4}x + C\).
B. \(\dfrac{1}{4}{\sin ^4}x + C\).
C. \( - \dfrac{1}{4}{\sin ^4}x + C\).
D. \({\sin ^4}x + C\).
A. \({2009^x}\ln 2009\).
B. \(\dfrac{{{{2009}^x}}}{{\ln 2009}}\).
C. \({2009^x} + 1\).
D. \({2009^x}\).
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
A. 1
B. 3
C. 80
D. 9
A. 3
B. 2
C. 10
D. 0
A. \({e^x} + 2\sin x\).
B. \({e^x} + \sin 2x\).
C. \({e^x} + {\cos ^2}x\).
D. \({e^x} - 2\sin x\).
A. Nếu f(x), g(x) là các hàm số liên tục trên R thì \(\int {\left[ {f(x) + g(x)} \right]} \,dx = \int {f(x)\,dx + \int {g(x)\,dx} } \)
B. Nếu các hàm số u(x), v(x) liên tục và có đạo hàm trên R thì \(\int {u(x)v'(x)\,dx + \int {v(x)u'(x)\,dx = u(x)v(x)} } \)
C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) – G(x) = C ( với C là hằng số )
D. \(F(x) = {x^2}\) là một nguyên hàm của f(x) = 2x.
A. \(\int {2\sin x\,dx = {{\sin }^2}x} + C\)
B. \(\int {2\sin x\,dx = 2\cos x} + C\)
C. \(\int {2\sin x\,dx = \sin 2x} + C\)
D. \(\int {2\sin x\,dx = - 2\cos x} + C\)
A. \(\dfrac{1}{3}\)
B. 17
C. 7
D. 9
A. \(I = {e^{\dfrac{\pi }{2}}} + 2\)
B. \(I = {e^{\dfrac{\pi }{2}}} + 1\)
C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)
D. \(I = {e^{\dfrac{\pi }{2}}}\)
A. 46
B. 44
C. 36
D. 54
A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).
B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).
C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).
D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)
A. Hàm số \(y = \dfrac{1}{x}\) có nguyên hàm trên \(( - \infty ; + \infty )\).
B. \(3{x^2}\) là một nguyên hàm của \({x^3}\) trên \(( - \infty ; + \infty )\).
C. Hàm số \(y = |x|\) có nguyên hàm trên \(( - \infty ; + \infty )\).
D. \(\dfrac{1}{x} + C\) là họ nguyên hàm của lnx trên \((0; + \infty )\).
A. \(2\left( {{2^{\sqrt x }} - 1} \right) + C\).
B. \({2^{\sqrt x }} + C\).
C. \({2^{\sqrt x + 1}}\).
D. \(2\left( {{2^{\sqrt x }} + 1} \right) + C\).
A. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 6 - 4\sqrt 3 \).
B. \(\dfrac{{{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{6} + 6 - 4\sqrt 3 \).
C. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 3 - 2\sqrt 3 \).
D. 0
A. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
B. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
C. \(2{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
D. \(2{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
A. \(\cot x - 2\tan x + C\).
B. \( - \cot x + 2\tan x + C\).
C. \(\cot x + 2\tan x + C\).
D. \( - \cot x - 2\tan x + C\)
A. \(\dfrac{{146}}{{15}}\)
B. \(\dfrac{{116}}{{15}}\)
C. \(\dfrac{{886}}{{105}}\)
D. \(\dfrac{{105}}{{886}}\).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).
A. \( - \dfrac{6}{{45}}.\)
B. \(\dfrac{{45}}{6}.\)
C. \(\dfrac{6}{{45}}.\)
D. \( - \dfrac{{45}}{6}.\)
A. \(\dfrac{3}{8}\).
B. \( - \dfrac{3}{8}\).
C. \(\dfrac{8}{3}\).
D. \( - \dfrac{8}{3}\).
A. x = 5;y = 11
B. x = - 5;y = 11
C. x = - 11;y = - 5
D. x = 11;y = 5
A. tam giác vuông tại \(A\)
B. tam giác cân tại \(A\).
C. tam giác vuông cân tại \(A\).
D. Tam giác đều.
A. \(\sqrt 6 \).
B. \(\dfrac{{\sqrt 6 }}{3}\).
C. \(\dfrac{{\sqrt 6 }}{2}\).
D. \(\dfrac{1}{2}\).
A. \(2\sqrt {83} \).
B. \(\sqrt {83} \).
C. 83
D. \(\dfrac{{\sqrt {83} }}{2}\).
A. 2
B. -1
C. -2
D. 1
A. \({x^2} + {y^2} + {z^2} - 2x = 0.\)
B. \(2{x^2} + 2{y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x - 1.\)
C. \({x^2} + {y^2} + {z^2} + 2x - 2y + 1 = 0.\)
D. \({\left( {x + y} \right)^2} = 2xy - {z^2} + 1 - 4x.\)
A. 4
B. 3
C. 2
D. 1
A. \(I\left( {1; - 2;0} \right).\)
B. \(I\left( { - 1;2;0} \right).\)
C. \(I\left( {1;2;0} \right).\)
D. \(I\left( { - 1; - 2;0} \right).\)
A. 0
B. \(\dfrac{2}{5}\).
C. \(\dfrac{2}{{\sqrt 5 }}\).
D. \( - \dfrac{2}{5}\).
A. \(\overrightarrow b = \left( { - 2; - 6; - 8} \right).\)
B. \(\overrightarrow b = \left( { - 2; - 6;8} \right).\)
C. \(\overrightarrow b = \left( { - 2;6;8} \right).\)
D. \(\overrightarrow b = \left( {2; - 6; - 8} \right).\)
A. 10
B. 13
C. 12
D. 14
A. \(Q = \left( { - 2; - 3;4} \right)\)
B. \(Q = \left( {2;3;4} \right)\)
C. \(Q = \left( {3;4;2} \right)\)
D. \(Q = \left( { - 2; - 3; - 4} \right)\)
A. \(\sqrt 6 .\)
B. \(\sqrt 8 .\)
C. \(\sqrt {10} .\)
D. \(\sqrt {12} .\)
A. \({x^2}.\sin x + x.\cos x - 2\sin x + C\).
B. \({x^2}.\sin x + 2x.\cos x - 2\sin x + C\).
C. \(x.\sin x + 2x.\cos x + C\).
D. \(2x.\cos x + \sin + C\).
A. \( - \dfrac{{{\pi ^2}}}{4}\)
B. \(\pi^2\)
C. \(\dfrac{{{\pi ^2}}}{2}\)
D. \(- \dfrac{{{\pi ^2}}}{2}\)
A. \( - \dfrac{1}{4}\cos 2x + C\)
B. \(\dfrac{1}{2}{\sin ^2}x + C\)
C. \( - \dfrac{1}{2}{\cos ^2}x + C\)
D. \(\dfrac{1}{2}\cos 2x + C\)
A. 32
B. 34
C. 46
D. 40
A. \(- \dfrac{1}{x} - \dfrac{2}{{{x^2}}} - \dfrac{4}{{3{x^2}}} + C\)
B. \(\dfrac{1}{x} - \dfrac{2}{{{x^2}}} - \dfrac{4}{{3{x^2}}} + C\)
C. \(- \dfrac{1}{x} - \dfrac{1}{{{x^2}}} - \dfrac{1}{{{x^3}}} + C\)
D. \(- \dfrac{1}{x} + \dfrac{2}{{{x^2}}} - \dfrac{4}{{3{x^2}}} + C\)
A. \({\left( {a - x} \right)^{\dfrac{5}{2}}} + ax + C\)
B. \(- \dfrac{2}{5}{\left( {a - x} \right)^{\dfrac{5}{2}}} + ax + C\)
C. \({\left( {a - x} \right)^{\dfrac{5}{2}}} - a + C\)
D. \(\dfrac{2}{5}{\left( {a - x} \right)^{\dfrac{5}{2}}} - \dfrac{2}{3}a{\left( {a - x} \right)^{\dfrac{3}{2}}} + C\)
A. \({V_y} = 12\pi\)
B. \({V_y} = 8\pi\)
C. \({V_y} = 18\pi \)
D. \({V_y} = 16\pi\)
A. \(\dfrac{6}{7}\)
B. \(\dfrac{7}{6}\)
C. 1
D. 2
A. \(\dfrac{1}{{x{{\ln }^3}x}}\)
B. \(x{\ln ^3}x\)
C. \(\dfrac{{{x^2}}}{{{{\ln }^3}x}}\)
D. \(\dfrac{{{{\ln }^3}x}}{x}\)
A. \({e^3} - \dfrac{7}{2}{e^2} + \ln \left( {1 + e} \right)\)
B. \({e^2} - 7e + \dfrac{1}{{e + 1}}\)
C. \({e^3} - \dfrac{7}{2}{e^2} - \dfrac{1}{{{{\left( {e + 1} \right)}^2}}}\)
D. \({e^3} - 7{e^2} - \ln \left( {1 + e} \right)\)
A. 6
B. 46
C. 26
D. 12
A. \(\int\limits_a^b {\left| {f(a)} \right|\,dx}\)
B. \( - \int\limits_a^b {f(x)\,dx}\)
C. \(\int\limits_b^a {f(x)\,dx}\)
D. \(\int\limits_a^b {f(x)\,dx}\)
A. 24
B. -7
C. -4
D. 8
A. \(\int\limits_a^b {f(x)\,dx = \int\limits_b^a {f(x)\,dx} }\)
B. \(\int\limits_a^b {k.dx = k\left( {b - a} \right),\,\forall k \in R}\)
C. \(\int\limits_a^b {f(x)\,dx = - \int\limits_b^a {f(x)\,dx} }\)
D. \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx + \int\limits_c^b {f(x)\,dx\,,\,\,\,c \in [a;b]} } }\)
A. \(I = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{2t}}{{1 + 1}}\,dt} \).
B. \(I = \int\limits_{\dfrac{0}{2}}^{\dfrac{x}{4}} {\dfrac{{2t}}{{1 + 1}}\,dt} \).
C. \(I = - \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{2t}}{{1 + 1}}\,dt} \).
D. \(I = - \int\limits_{\dfrac{0}{2}}^{\dfrac{x}{4}} {\dfrac{{2t}}{{1 + 1}}\,dt} \).
A. \(\left\{ \begin{array}{l}A = - 2\\B = - \dfrac{2}{\pi }\end{array} \right.\).
B. \(\left\{ \begin{array}{l}A = 2\\B = - \dfrac{2}{\pi }\end{array} \right.\).
C. \(\left\{ \begin{array}{l}A = - 2\\B = \dfrac{2}{\pi }\end{array} \right.\).
D. \(\left\{ \begin{array}{l}B = 2\\A = - \dfrac{2}{\pi }\end{array} \right.\)
A. \(I = \dfrac{1}{2}\)
B. \(I = \dfrac{{3{e^2} + 1}}{4}\).
C. \(I = \dfrac{{{e^2} + 1}}{4}\).
D. \(I = \dfrac{{{e^2} - 1}}{4}\).
A. \(4\cos x + \ln x + C\).
B. \(4\cos x + \dfrac{1}{x} + C\).
C. \(4\sin x - \dfrac{1}{x} + C\).
D. \(4\sin x + \dfrac{1}{x} + C\).
A. \(2\ln 2 + 3\).
B. \(\dfrac{{\ln 2}}{2} + \dfrac{3}{4}\).
C. \(\ln 2 + \dfrac{3}{2}\).
D. \(\ln 2 + 1\).
A. \(I = 2\int\limits_8^9 {\sqrt u du} \).
B. \(I = \dfrac{1}{2}\int\limits_8^9 {\sqrt u \,du} \).
C. \(I = \int\limits_8^9 {\sqrt u \,du} \).
D. \(I = \int\limits_9^8 {\sqrt u \,du} \)
A. \(\ln \dfrac{3}{2}\)
B. \(\dfrac{1}{2}\)
C. ln 2
D. ln 2 + 1
A. \(\pi \int\limits_0^\pi {{{\sin }^2}x} \,dx\).
B. \(\dfrac{\pi }{2}\int\limits_0^\pi {{{\sin }^2}x} \,dx\).
C. \(\dfrac{\pi }{2}\int\limits_0^\pi {{{\sin }^4}x} \,dx\).
D. \(\pi \int\limits_0^\pi {\sin x} \,dx\).
A. \(I = 2\int\limits_0^1 {dt} \).
B. \(I = 2\int\limits_0^{\dfrac{\pi }{4}} {dt} \).
C. \(I = \int\limits_0^{\dfrac{\pi }{3}} {dt} \).
D. \(I = 2\int\limits_0^{\dfrac{\pi }{6}} {dt} \).
A. -2
B. \(\dfrac{{13}}{6}\)
C. \(\ln 2 - \dfrac{3}{4}\)
D. \(\ln 3 - \dfrac{3}{5}\).
A. \(\int {\dfrac{{dx}}{{6x - 2}} = 6\ln |6x - 2| + C} \).
B. \(\int {\dfrac{{dx}}{{6x - 2}} = \dfrac{1}{6}\ln |6x - 2| + C} \).
C. \(\int {\dfrac{{dx}}{{6x - 2}} = \dfrac{1}{2}\ln |6x - 2| + C} \).
D. \(\int {\dfrac{{dx}}{{6x - 2}} = \ln |6x - 2| + C} \).
A. \(\overrightarrow {OM} = x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k \)
B. \(\overrightarrow {OM} = z.\overrightarrow i + y.\overrightarrow j + x.\overrightarrow k \)
C. \(\overrightarrow {OM} = x.\overrightarrow j + y.k + z.\overrightarrow i \)
D. \(\overrightarrow {OM} = x.\overrightarrow k + y.\overrightarrow j + z.\overrightarrow i \)
A. \(M\left( {1;1; - 3} \right)\)
B. \(M\left( {1; - 1; - 3} \right)\)
C. \(M\left( {1; - 3;1} \right)\)
D. \(M\left( { - 1; - 3;1} \right)\)
A. -1
B. 1
C. 2
D. -2
A. \(N\left( {x;y;z} \right)\)
B. \(N\left( {x;y;0} \right)\)
C. \(N\left( {0;0;z} \right)\)
D. \(N\left( {0;0;1} \right)\)
A. \(C\left( { - 1;3;2} \right)\)
B. \(C\left( {11; - 2;10} \right)\)
C. \(C\left( {5; - 6;2} \right)\)
D. \(C\left( {13; - 8;8} \right)\)
A. \(G\left( {0;\dfrac{3}{4};1} \right)\)
B. \(G\left( {0;3;4} \right)\)
C. \(G\left( {\dfrac{1}{2}; - \dfrac{1}{2}; - \dfrac{1}{2}} \right)\)
D. \(G\left( {0;\dfrac{3}{2};2} \right)\)
A. \(\overrightarrow u = k\overrightarrow n \left( {k \ne 0} \right)\)
B. \(\overrightarrow n = k\overrightarrow u \)
C. \(\overrightarrow n .\overrightarrow u = 0\)
D. \(\overrightarrow n .\overrightarrow u = \overrightarrow 0 \)
A. \(d//\left( P \right)\)
B. \(d \subset \left( P \right)\)
C. \(\left( P \right) \subset d\)
D. \(d \bot \left( P \right)\)
A. \(\left( { - 1;1; - 3} \right)\)
B. \(\left( {1;2;0} \right)\)
C. \(\left( {2; - 2;3} \right)\)
D. \(\left( {2; - 2; - 3} \right)\)
A. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)
B. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)
C. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)
D. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)
A. d // d'
B. \(d \equiv d'\)
C. d cắt d'
D. A hoặc B đúng
A. \(\left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\end{array} \right.\)
B. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \)
C. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\)
D. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)
A. d // d'
B. \(d \equiv d'\)
C. d cắt d'
D. d chéo d'
A. d // d'
B. \(d \bot d'\)
C. \(d \equiv d'\)
D. d cắt d'
A. cắt nhau
B. song song
C. chéo nhau
D. trùng nhau
A. \(V = \pi \int\limits_0^2 {\left( {2 - x} \right)\,dx + \pi \int\limits_0^2 {{x^2}\,dx} } \)
B. \(V = \pi \int\limits_0^2 {\left( {2 - x} \right)\,dx}\)
C. \(V = \pi \int\limits_0^1 {x\,dx + \pi \int\limits_1^2 {\sqrt {2 - x} \,dx} }\)
D. \(V = \pi \int\limits_0^1 {{x^2}\,dx + \pi \int\limits_1^2 {\left( {2 - x} \right)\,dx} }\)
A. tan x + C
B. \(\dfrac{{ - 1}}{{\cos x}} + C\)
C. cot x + C
D. \(\dfrac{1}{{\cos x}} + C\)
A. 29
B. 5
C. 19
D. 40
A. \(\dfrac{4}{3}\)
B. \(\dfrac{3}{2}\)
C. \(\dfrac{5}{3}\)
D. \(\dfrac{{23}}{{15}}\).
A. \(\left| {\int\limits_a^b {f(x)\,dx} } \right| \ge \int\limits_a^b {|f(x)|\,dx} \).
B. \(\left| {\int\limits_a^b {f(x)\,dx} } \right| \le \int\limits_a^b {|f(x)|\,dx} \).
C. \(\left| {\int\limits_a^b {f(x)\,dx} } \right| = \int\limits_a^b {|f(x)|\,dx} \).
D. Cả 3 phương án trên đều sai.
A. \( - \cot x - 2\tan x + C\).
B. \(\cot x - 2\tan x + C\).
C. \(\cot x + 2\tan x + C\).
D. \( - \cot x + 2\tan x + C\).
A. \(\left| {\int\limits_{ - 1}^4 {f(x)\,dx} } \right|\).
B. \(\int\limits_{ - 1}^4 {f(x)\,dx} \).
C. \(\int\limits_{ - 1}^0 {f(x)\,dx + \int\limits_0^4 {f(x)\,dx} } \).
D. \(\int\limits_{ - 1}^0 {f(x)\,dx - \int\limits_0^4 {f(x)\,dx} } \).
A. (1 ; 3 ; 2).
B. (2 ; - 3 ; 1).
C. (1 ; - 1 ; 1).
D. Một kết quả khác.
A. \(I = \int\limits_0^3 {\sqrt u \,du} \).
B. \(I = \dfrac{2}{3}\sqrt {27} \).
C. \(\int\limits_1^2 {\sqrt u \,du} \).
D. \(I = \dfrac{2}{3}{u^{\dfrac{3}{2}}}\left| \begin{array}{l}3\\0\end{array} \right.\).
A. \(\int\limits_a^b {[f(x) + g(x)]\,dx} = \int\limits_a^b {f(x)\,dx + \int\limits_a^b {g(x)\,dx} } \).
B. f(x) liên tục trên [a ; c] và a < b < c thì \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx + \int\limits_b^c {f(x)\,dx} } } \).
C. Nếu \(f(x) \ge 0\) trên đoạn [a ; b] thì \(\int\limits_a^b {f(x)\,dx \ge 0} \).
D. \(\int {\dfrac{{u'(x)dx}}{{u(x)}} = \ln \left| {u(x)} \right|} + C\).
A. \(F(x) = {e^x} - 3{e^{ - 3x}} + C\).
B. \(F(x) = {e^x} + 3{e^{ - x}} + C\).
C. \(F(x) = {e^x} - 3{e^{ - x}} + C\).
D. \(F(x) = {e^x} + C\).
A. I = 27
B. I = 3
C. I = 9
D. I = 1
A. \(\int {\left[ {f(x).g(x)} \right]} \,dx = \int {f(x)\,dx.\int {g(x)\,dx} } \)
B. \(\int {k.f(x)\,dx = k\int {f(x)\,dx} } \)
C. \(\int {f'(x)\,dx} = f(x) + C\)
D. \(\int {\left[ {f(x) \pm g(x)} \right]\,dx = \int {f(x)\,dx \pm \int {g(x)\,dx} } } \)
A. 0
B. -1
C. 1
D. 2
A. \(\dfrac{{{e^2} - 1}}{2}\).
B. \(\dfrac{{{e^2} + 1}}{2}\).
C. \(\dfrac{{{e^2} - 3}}{4}\).
D. \(\dfrac{{{e^2} - 3}}{2}\).
A. \(2\ln \dfrac{1}{3}\).
B. \(2\ln 3\).
C. \(\dfrac{1}{2}\ln 3\).
D. \(\dfrac{1}{2}\ln \dfrac{1}{3}\).
A. \(I = \dfrac{2}{3}{x^3} + \dfrac{1}{3}{x^{ - \dfrac{2}{3}}} - \tan x + C\).
B. \(I = \dfrac{2}{3}{x^3} - \dfrac{3}{2}{x^{\dfrac{2}{3}}} - \tan x + C\).
C. \(I = \dfrac{2}{3}{x^3} - \dfrac{2}{3}\sqrt[3]{{{x^2}}} - \tan x + C\).
D. \(I = \dfrac{2}{3}{x^3} - \dfrac{3}{2}{x^{\dfrac{2}{3}}} + \tan x + C\).
A. \(\dfrac{3}{2}\)
B. \(\dfrac{{ - 3}}{2}\)
C. \(\dfrac{1}{6}\)
D. \( - \dfrac{1}{6}\).
A. y = sin + 1.
B. y = cosx.
C. y = cotx.
D. y = - cosx.
A. \(\dfrac{1}{3}{\left( {3\ln x + 2} \right)^5} + C\).
B. \(\dfrac{1}{{15}}{\left( {3\ln x + 2} \right)^5} + C\).
C. \(\dfrac{{{{\left( {3\ln x + 2} \right)}^5}}}{5} + C\).
D. \(\dfrac{1}{5}{\left( {3\ln x + 2} \right)^5} + C\).
A. \(\dfrac{{2 - e}}{e}\).
B. e
C. \(\dfrac{{e - 2}}{e}\)
D. 2e
A. \(\int\limits_a^b {f(3x + 5)\,dx = F(3x + 5)\left| \begin{array}{l}b\\a\end{array} \right.} \).
B. \(\int\limits_a^b {f(x + 1)\,dx = F(x)\left| \begin{array}{l}b\\a\end{array} \right.} \).
C. \(\int\limits_a^b {f(2x)\,dx = 2\left( {F(b) - F(a)} \right)} \).
D. \(\int\limits_a^b f (x)\,dx = F(b) - F(a)\).
A. \( - \dfrac{3}{4}\).
B. \(\dfrac{3}{4}\)
C. \( - \dfrac{4}{3}\)
D. \(\dfrac{4}{3}\).
A. \(\int\limits_a^b {f(x)\,dx = F(a) + F(b)} \)
B. \(\int\limits_a^b {f(x)\,dx = F(a) - F(b)}\)
C. \(\int\limits_a^b {f(x)\,dx = F(b) - F(a)}\)
D. \(\int\limits_a^b {f(x)\,dx = f(b) - f(a)} \)
A. \(Q\left( { - 6;5;2} \right)\).
B. \(Q\left( {6;5;2} \right)\).
C. \(Q\left( {6; - 5;2} \right)\).
D. \(Q\left( { - 6; - 5; - 2} \right)\).
A. tam giác có ba góc nhọn.
B. tam giác cân đỉnh \(A\).
C. tam giác vuông đỉnh \(A\).
D. tam giác đều.
A. \(D\left( { - 4;5; - 1} \right)\).
B. \(D\left( {4;5; - 1} \right)\).
C. \(D\left( { - 4; - 5; - 1} \right)\).
D. \(D\left( {4; - 5;1} \right)\)
A. 2
B. -3
C. 1
D. 3
A. \(M'\left( {2;5;0} \right)\).
B. \(M'\left( {0; - 5;0} \right)\).
C. \(M'\left( {0;5;0} \right)\).
D. \(M'\left( { - 2;0;0} \right)\).
A. \(M'\left( {1;2;0} \right)\).
B. \(M'\left( {1;0; - 3} \right)\).
C. \(M'\left( {0;2; - 3} \right)\).
D. \(M'\left( {1;2;3} \right)\).
A. \(M'\left( {1;2;0} \right)\).
B. \(M'\left( {1;0; - 3} \right)\).
C. \(M'\left( {0;2; - 3} \right)\).
D. \(M'\left( {1;2;3} \right)\).
A. \(\sqrt {29} \)
B. \(\sqrt 5 \).
C. 2
D. \(\sqrt {26} \).
A. \(\overrightarrow {IA} = \overrightarrow {IB} + \overrightarrow {IC} .\)
B. \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {CI} = \overrightarrow 0 .\)
C. \(\overrightarrow {IA} + \overrightarrow {BI} + \overrightarrow {IC} = \overrightarrow 0 .\)
D. \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} = \overrightarrow 0 .\)
A. \(\overrightarrow b \bot \overrightarrow c .\)
B. \(\overrightarrow {\left| a \right|} = \sqrt 2 .\)
C. \(\overrightarrow {\left| c \right|} = \sqrt 3 .\)
D. \(\overrightarrow a \bot \overrightarrow b .\)
A. \(\sqrt 6 \).
B. 2
C. \(-\sqrt 6 \).
D. 4
A. \(M\left( {a;0;0} \right),a \ne 0\).
B. \(M\left( {0;b;0} \right),b \ne 0\).
C. \(M\left( {0;0;c} \right),c \ne 0\).
D. \(M\left( {a;1;1} \right),a \ne 0\) .
A. \(\overrightarrow i \)
B. \(\overrightarrow j \)
C. \(\overrightarrow k \)
D. \(\overrightarrow 0 \)
A. \(\overrightarrow i = 1\)
B. \(\left| {\overrightarrow i } \right| = 1\)
C. \(\left| {\overrightarrow i } \right| = 0\)
D. \(\left| {\overrightarrow i } \right| = \overrightarrow i \)
A. \(\left| {\overrightarrow i } \right| = {\overrightarrow k ^2}\)
B. \(\overrightarrow j = {\overrightarrow k ^2}\)
C. \(\overrightarrow i = \overrightarrow j \)
D. \({\left| {\overrightarrow k } \right|^2} = \overrightarrow k \)
A. \(\overrightarrow i .\overrightarrow j = 0\)
B. \(\overrightarrow k .\overrightarrow j = 0\)
C. \(\overrightarrow j .\overrightarrow k = \overrightarrow 0 \)
D. \(\overrightarrow i .\overrightarrow k = 0\)
A. \(\mathop \smallint \nolimits_{}^{} \frac{{dx}}{x} = \ln \;x\; + \,C\)
B. \(\mathop \smallint \nolimits_{}^{} {x^\alpha }dx = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}\; + \,C\left( {\alpha \ne - 1} \right)\)
C. \(\mathop \smallint \nolimits_{}^{} {\alpha ^x}dx = \frac{{{\alpha ^x}}}{{\ln \;\alpha }}\; + \,C\left( {0 < \alpha \ne - 1} \right)\)
D. \(\mathop \smallint \nolimits_{}^{} \frac{1}{{{{\cos }^2}x}}dx = \tan \;x + C\)
A. \(\tan x-\cot x+C\)
B. \(\cot 2 x+C\)
C. \(\tan 2 x-x+C\)
D. \(-\tan x+\cot x+C\)
A. \(f(x)=-\sin x+7 \cos x\)
B. \(f(x)=\sin x+7 \cos x\)
C. \(f(x)=\sin x-7 \cos x\)
D. \(f(x)=-\sin x-7 \cos x\)
A. \(F(x)=\tan x-x+C\)
B. \(F(x)=-\tan x+x+C\)
C. \(F(x)=\tan x+x+C\)
D. \(F(x)=-\tan x-x+C\)
A. \(\frac{2}{3} \int_{1}^{3} u^{2} d u\)
B. \(\frac{2}{3} \int_{0}^{2} u^{2} d u\)
C. \(\left.\frac{2}{9} u^{3}\right|_{1} ^{2}\)
D. \(\int_{1}^{3} u^{2} d u\)
A. 11
B. 9
C. 7
D. 12,5
A. -2
B. \(\ln 3-\frac{3}{5}\)
C. \(\frac{3 \pi}{16}\)
D. \(\ln 2-\frac{3}{4}\)
A. \(\ln 3-\frac{3}{5}\)
B. \(\ln 2-2\)
C. \(\ln 2-\frac{3}{4}\)
D. \(\ln 2-\frac{3}{8}\)
A. \(4 \sqrt{2}\)
B. \(3 \sqrt{2}\)
C. \( \sqrt{2}\)
D. \(- \sqrt{2}\)
A. 1
B. 2
C. 3
D. 6
A. \(\frac{-5 \pi}{8}\)
B. \(\frac{\pi}{2}\)
C. \(\frac{3 \pi}{8}\)
D. \(\frac{\pi}{8}\)
A. \(-\left.\left(x^{2}-5 x\right) \ln x\right|_{1} ^{e}-\int_{1}^{e}(x-5) d x\)
B. \(\left.\left(x^{2}-5 x\right) \ln x\right|_{1} ^{e}+\int_{1}^{e}(x-5) d x\)
C. \(\left.(x-5) \ln x\right|_{1} ^{e}-\int_{1}^{e}\left(x^{2}-5 x\right) d x\)
D. \(\left.\left(x^{2}-5 x\right) \ln x\right|_{1} ^{e}-\int_{1}^{e}(x-5) d x\)
A. 7
B. 5
C. 2
D. \(\frac{5}{2}\)
A. 5
B. -6
C. 9
D. -9
A. \( {S_H} = \mathop \smallint \limits_a^b \left| {f\left( x \right)} \right|{\rm{d}}x - \mathop \smallint \limits_a^b \left| {g\left( x \right)} \right|{\rm{d}}x.\)
B. \( {S_H} = \mathop \smallint \limits_a^b \left| {f\left( x \right) - g\left( x \right)} \right|{\rm{d}}x.\)
C. \( {S_H} = \left| {\mathop \smallint \limits_a^b \left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} \right|.\)
D. \( {S_H} = \mathop \smallint \limits_a^b \left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x.\)
A. \( S = \mathop \smallint \limits_a^b \left( {f\left( x \right) - g\left( x \right)} \right)dx\)
B. \( S = \mathop \smallint \limits_a^b \left( {g\left( x \right) - f\left( x \right)} \right)dx\)
C. \( S = \mathop \smallint \limits_a^b \left| {f\left( x \right) - g\left( x \right)} \right|dx\)
D. \( S = \mathop \smallint \limits_a^b \left| {f\left( x \right)} \right|dx - \mathop \smallint \limits_a^b \left| {g\left( x \right)} \right|dx\)
A. \( S = \mathop \smallint \limits_1^3 f\left( x \right)dx.\)
B. \( S = \mathop \smallint \limits_1^3 \left| {f\left( x \right)} \right|dx\)
C. \( S = \mathop \smallint \limits_3^1 f\left( x \right)dx.\)
D. \( S = \mathop \smallint \limits_3^1 \left| {f\left( x \right)} \right|dx.\)
A. \( S = \mathop \smallint \limits_{ - 2}^{ - 3} 2xdx\)
B. \(S = \pi \mathop \smallint \limits_{ - 3}^{ - 2} 4{x^2}dx\)
C. \( S = \mathop \smallint \limits_{ - 3}^{ - 2} 2xdx\)
D. \( S = \mathop \smallint \limits_{ - 3}^{ - 2} (2x)^2dx\)
A. A′(3;−2;1).
B. A′(3;2;−1).
C. A′(3;−2;−1).
D. A′(3;2;1)
A. \( S = \mathop \smallint \limits_{ - 3}^{ - 1} \left| {{x^2} - 1} \right|dx\)
B. \( S = \mathop \smallint \limits_{ - 1}^{ - 3} \left| {{x^2} - 1} \right|dx\)
C. \( S = \mathop \smallint \limits_{ - 3}^{ 0} \left| {{x^2} - 1} \right|dx\)
D. \( S = \mathop \smallint \limits_{ - 3}^{ - 1} \left( {1 - {x^2}} \right)dx\)
A. \( M\left( {\frac{{ - {x_A} + {x_B}}}{2};\frac{{ - {y_A} + {y_B}}}{2};\frac{{ - {z_A} + {z_B}}}{2}} \right)\)
B. \( M\left( {\frac{{{x_A} + {x_B}}}{3};\frac{{{y_A} + {y_B}}}{3};\frac{{{z_A} + {z_B}}}{3}} \right)\)
C. \(M\left( {\frac{{{x_A} - {x_B}}}{2};\frac{{{y_A} - {y_B}}}{2};\frac{{{z_A} - {z_B}}}{2}} \right)\)
D. \( M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\)
A. M∈(Oxz).
B. M∈(Oyz).
C. M∈Oy.
D. M∈(Oxy).
A. K(0;2;3).
B. H(1;2;0).
C. F(0;2;0).
D. E(1;0;3).
A. Mặt phẳng (Oxy).
B. Trục Oy.
C. Mặt phẳng (Oyz).
D. Mặt phẳng (Oxz).
A. H(3 ; 0 ; 2)
B. H(-3 ; 0 ; -2)
C. H(-1 ; 4 ; 4)
D. H(-1 ; -1 ; 0)
A. (0 ;-3 ; 5)
B. (1 ;-3 ; 0)
C. (0 ;-3 ; 0)
D. (0 ;-3 ; -5)
A. (-2 ; 2 ; 0)
B. (-2 ; 0 ; 2)
C. (-1 ; 1 ; 0)
D. (-1 ; 0 ; 1)
A. \(H(6 ; 7 ; 8)\)
B. \(H(1 ; 2 ; 2)\)
C. \(H(2 ; 5 ; 3)\)
D. \(H(2 ;-3 ;-1)\)
A. (1 ; 1 ; 3)
B. (5 ; 2 ; 2)
C. (0 ; 0 ;-3)
D. (3 ; 0 ; 3)
A. \((x-1)^{2}+y^{2}+(z+2)^{2}+25=0\)
B. \((x+1)^{2}+y^{2}+(z-2)^{2}=25\)
C. \((x-1)^{2}+y^{2}+(z-2)^{2}=25\)
D. \((x-1)^{2}+y^{2}+(z+2)^{2}=25\)
A. \((x-1)^{2}+(y-2)^{2}+(z+3)^{2}=14\)
B. \((x+1)^{2}+(y+2)^{2}+(z-3)^{2}=53\)
C. \((x-1)^{2}+(y-2)^{2}+(z+3)^{2}=17\)
D. \((x-1)^{2}+(y-2)^{2}+(z+3)^{2}=53\)
A. \((S):(x-1)^{2}+y^{2}+(z+3)^{2}=9\)
B. \((S):(x+1)^{2}+y^{2}+(z-3)^{2}=3\)
C. \((S):(x-1)^{2}+y^{2}+(z+3)^{2}=3\)
D. \((S):(x+1)^{2}+y^{2}+(z-3)^{2}=9\)
A. \((x+1)^{2}+(y+1)^{2}+(z+1)^{2}=62\)
B. \((x+5)^{2}+(y+1)^{2}+(z-6)^{2}=62\)
C. \((x-1)^{2}+(y-1)^{2}+(z-1)^{2}=62\)
D. \((x-5)^{2}+(y-1)^{2}+(z+6)^{2}=62\)
A. \(3\over2\)
B. 3
C. \(\sqrt5\over2\)
D. 2
A. \((x-1)^{2}+y^{2}+(z+2)^{2}=4\)
B. \((x+1)^{2}+y^{2}+(z-2)^{2}=16\)
C. \((x+1)^{2}+y^{2}+(z-2)^{2}=4\)
D. \((x-1)^{2}+y^{2}+(z+2)^{2}=16\)
A. \(9\over7\)
B. \(9\over7\sqrt2\)
C. \(9\over14\)
D. \(9\over\sqrt2\)
A. \(\sqrt {\frac{19}{86}}\)
B. \(\sqrt {\frac{86}{19}}\)
C. 11
D. \(\sqrt {\frac{19}{2}}\)
A. 1
B. 2
C. 2 hoặc 32
D. 32
A. \(1\over9\)
B. \(1\over3\)
C. \(1\over6\)
D. \(1\over2\)
A. \(-\frac{1}{6} \sqrt{\left(5-4 x^{2}\right)^{3}}+C\)
B. \(-\frac{3}{8} \sqrt{\left(5-4 x^{2}\right)}+C\)
C. \(\frac{1}{6} \sqrt{\left(5-4 x^{2}\right)^{3}}+C\)
D. \(-\frac{1}{12} \sqrt{\left(5-4 x^{2}\right)^{3}}+C\)
A. \(F\left( x \right) = 2x - \frac{3}{x} + 2\)
B. \(F\left( x \right) = 2\ln \left| x \right| + \frac{3}{x} + 2\)
C. \(F\left( x \right) = 2x + \frac{3}{x} - 4\)
D. \(F\left( x \right) = 2\ln \left| x \right| - \frac{3}{x} + 4\)
A. \(-\frac{1}{4 \sin ^{4} x}\)
B. \(\frac{1}{4 \sin ^{4} x}\)
C. \(\frac{4}{\sin ^{4} x}\)
D. \(\frac{-4}{\sin ^{4} x}\)
A. \(F\left( x \right) = \frac{{2{x^3}}}{3} - \frac{3}{x} + C\)
B. \(F\left( x \right) = \frac{{{x^3}}}{3} - \frac{3}{x} + C\)
C. \(F\left( x \right) = - 3{x^3} - \frac{3}{x} + C\)
D. \(F\left( x \right) = \frac{{2{x^3}}}{3} + \frac{3}{x} + C\)
A. \(f(x)=x^{3}-\sqrt{x}-\frac{1}{x}-x\)
B. \(f(x)=x^{3}-2 \sqrt{x}-\frac{1}{x}-x\)
C. \(f(x)=x^{3}-2 \sqrt{x}+\frac{1}{x}\)
D. \(f(x)=x^{3}-\frac{1}{2} \sqrt{x}-\frac{1}{x}-x\)
A. \(2 \alpha\)
B. \( \alpha\)
C. \(4 \alpha\)
D. \(\frac{\alpha}{2}\)
A. Nếu hàm số f liên tục trên đoạn [a;b] soa cho \(\int_{a}^{b} f(x) d x \geq 0 \text { thì } f(x) \geq 0 \quad \forall x \in[a ; b]\)
B. Nếu hàm số f liên tục trên đoạn [-3;3] luôn có \(\int_{-3}^{3} f(x) d x=0\)
C. Nếu hàm số f liên tục trên \(\mathbb{R}\) ta có \(\int_{a}^{b} f(x) d x=\int_{b}^{a} f(x) d(-x)\)
D. Nếu hàm số f liên tục trên đoạn [1;5 thì \(\int_{1}^{5}[f(x)]^{2} d x=\left.\frac{[f(x)]^{3}}{3}\right|_{1} ^{5}\)
A. F(2)-F(1)
B. -F(1)
C. F(2)
D. F(1)-F(2)
A. \(\int_{0}^{2}\left(x^{2}+x-3\right) d x\)
B. \(3 \int_{0}^{3 \pi} \sin x d x\)
C. \(\int_{0}^{\ln \sqrt{10}} e^{2 x} d x\)
D. \(\int_{0}^{\pi} \cos (3 x+\pi) d x\)
A. Nếu \(m \leq f(x) \leq M \forall x \in[a ; b] \text { thì } m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(a-b)\)
B. Nếu \(\begin{array}{l} f(x) \geq m \forall x \in[a ; b] \end{array}\) thì \( \int_{a}^{b} f(x) d x \geq m(b-a)\)
C. Nếu \(f(x) \leq M \forall x \in[a ; b] \) thì \(\int_{a}^{b} f(x) d x \leq M(b-a)\)
D. Nếu \(f(x) \geq m \forall x \in[a ; b]\) thì \(\int_{a}^{b} f(x) d x \geq m(a-b)\)
A. \( S = \left| {\mathop \smallint \nolimits_{ - 1}^1 \left( {3x - {x^3}} \right)dx} \right|\)
B. \( S = \mathop \smallint \nolimits_{ - 1}^0 \left( {3x - {x^3}} \right)dx + \mathop \smallint \nolimits_0^1 \left( {{x^3} - 3x} \right)dx\)
C. \( S = \mathop \smallint \nolimits_{ - 1}^1 \left( {3x - {x^3}} \right)dx\)
D. \( S = \mathop \smallint \nolimits_{ - 1}^0 \left( {{x^3} - 3x} \right)dx + \mathop \smallint \nolimits_0^1 \left( {3x - {x^3}} \right)dx\)
A. \( S = \mathop \smallint \limits_0^\pi \cos x{\mkern 1mu} {\rm{d}}x.\)
B. \( S = \mathop \smallint \limits_0^\pi \cos^2 x{\mkern 1mu} {\rm{d}}x.\)
C. \( S = \mathop \smallint \limits_0^\pi \left| {\cos x} \right|{\mkern 1mu} {\rm{d}}x.\)
D. \( S =\pi \mathop \smallint \limits_0^\pi \left| {\cos x} \right|{\mkern 1mu} {\rm{d}}x.\)
A. \( S = \mathop \smallint \limits_0^e \left| {{e^x} + x} \right|dx\)
B. \( S = \mathop \smallint \limits_0^e \left| {{e^x} - x} \right|dx\)
C. \( S = \mathop \smallint \limits_e^0 \left| {{e^x} - x} \right|dx\)
D. \( S = \mathop \smallint \limits_e^0 \left| {{e^x} + x} \right|dx\)
A. \( S = \mathop \smallint \limits_a^b \left[ {f\left( x \right) - g\left( x \right)} \right]{\mkern 1mu} {\rm{d}}x.\)
B. \( S = \mathop \smallint \limits_a^b \left[ {g\left( x \right) - f\left( x \right)} \right]{\mkern 1mu} {\rm{d}}x.\)
C. \( S = \mathop \smallint \limits_a^b \left[ {g\left( x \right) - f\left( x \right)} \right]{\mkern 1mu} {\rm{d}}x.\)
D. \( S = \mathop \smallint \limits_a^b \left| {f\left( x \right) - g\left( x \right)} \right|{\mkern 1mu} {\rm{d}}x.\)
A. M(2;0;1)
B. M(2;1;0)
C. M(0;2;1)
D. M(1;2;0)
A. (a;b;c)
B. (a;c;b)
C. (c;b;a)
D. (c;a;b)
A. \(\overrightarrow {OM} = x.\vec i + y.\vec j + z.\vec k\)
B. \(\overrightarrow {OM} = z.\vec i + y.\vec j + x.\vec k\)
C. \(\overrightarrow {OM} = z.\vec i + x.\vec j + y.\vec k\)
D. \(\overrightarrow {OM} = z.\vec i + y.\vec j + x \vec k\)
A. \( \vec i.\vec k = 1\)
B. \( \vec i.\vec i= 1\)
C. \( \vec i.\vec j = 0\)
D. \( \vec j.\vec j = 1\)
A. \( \vec j = {\vec k^2}\)
B. \(\left| {\vec i} \right| = {\vec k^2}\)
C. \( \vec i = {\vec j}\)
D. \({\left| {\vec k} \right|^2} = \vec k\)
A. H(0 ; 7 ;-13)
B. H(5 ; 7 ; 0)
C. H(0 ;-7 ; 13)
D. H(5 ; 0 ;-13)
A. Q(0 ; 0 ; 5)
B. M(3 ; 0 ; 0)
C. N(0 ;-4 ; 5)
D. P(3 ; 0 ; 5)
A. F(0 ; 2 ; 0)
B. E(1 ; 0 ; 3)
C. K(0 ; 2 ; 3)
D. H(1 ; 2 ; 0)
A. H(5 ;-6 ; 7)
B. H(2 ; 0 ; 4)
C. H(3 ;-2 ; 5)
D. H(-1 ; 6 ; 1)
A. M(-1 ; 2 ; 0)
B. P(0 ; 2 ; 1)
C. N(-1 ; 0 ; 1)
D. Q(0 ; 2 ; 0)
A. \(\frac{x-1}{1}=\frac{y-2}{-3}=\frac{z+1}{-2}\)
B. \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+1}{1}\)
C. \(\frac{x-1}{-2}=\frac{y-2}{-6}=\frac{z+1}{-4}\)
D. \(\frac{x+1}{1}=\frac{y+2}{3}=\frac{z-1}{2}\)
A. \(\frac{x+2}{1}=\frac{y+2}{2}=\frac{z+1}{3}\)
B. \(\frac{x-2}{1}=\frac{y-2}{2}=\frac{z-1}{3}\)
C. \(\frac{x+1}{2}=\frac{y+2}{2}=\frac{z+3}{1}\)
D. \(\frac{x-1}{2}=\frac{y-2}{2}=\frac{z-3}{1}\)
A. \(\left\{\begin{array}{l}x=3 \\ y=-1+t \\ z=t\end{array}\right.\)
B. \(\left\{\begin{array}{l}x=3 \\ y=-1 \\ z=t\end{array}\right.\)
C. \(\left\{\begin{array}{l} x=3+t \\ y=-1 \\ z=0 \end{array}\right.\)
D. \(\begin{aligned} &\left\{\begin{array}{l} x=3 \\ y=-1+t \\ z=0 \end{array}\right.\\ \end{aligned}\)
A. \(\frac{x-1}{1}=\frac{y-2}{-2}=\frac{z}{1}\)
B. \(\frac{x-1}{1}=\frac{y+2}{2}=\frac{z}{2}\)
C. \(\frac{x-1}{-2}=\frac{y-2}{1}=\frac{z}{1}\)
D. \(\frac{x-1}{-2}=\frac{y-2}{1}=\frac{z}{1}\)
A. \(\frac{x-1}{-3}=\frac{y}{-4}=\frac{z+1}{8}\)
B. \(\frac{x+1}{-3}=\frac{y-3}{-4}=\frac{z}{8}\)
C. \(\frac{x-1}{-3}=\frac{y-3}{-4}=\frac{z}{8}\)
D. \(\frac{x-1}{-3}=\frac{y}{-4}=\frac{z-1}{8}\)
A. \(M\left( -3;2;1 \right),M\left( -1;0;5 \right)\)
B. \(M\left( 3;2;-1 \right),M\left( -1;0;5 \right)\)
C. \(M\left( 3;2;1 \right),M\left( -1;0;5 \right)\)
D. \(M\left( 3;2;1 \right),M\left( 1;0;5 \right)\)
A. \(d: \frac{x-1}{2}=\frac{y-4}{2}=\frac{z+7}{1}\)
B. \(d: \frac{x-1}{4}=y+4=\frac{z+7}{2}\)
C. \(d: \frac{x-1}{1}=\frac{y-4}{2}=-\frac{z+7}{2}\)
D. \(d: \frac{x-1}{1}=\frac{y-4}{2}=\frac{z+7}{2}\)
A. \(\frac{x+1}{2}=\frac{y-3}{1}=\frac{z+4}{-1}\)
B. \(\frac{x-1}{2}=\frac{y+3}{1}=\frac{z-4}{-1}\)
C. \(\frac{x-2}{2}=\frac{y+3}{-1}=\frac{z-5}{1}\)
D. \(\frac{x-2}{1}=\frac{y-1}{-3}=\frac{z+1}{4}\)
A. \(\Delta:\left\{\begin{array}{l}x=1+3 t \\ y=-3+2 t \\ z=-2+2 t\end{array}\right.\)
B. \(\Delta:\left\{\begin{array}{l}x=1+4 t \\ y=-3-t \\ z=-2\end{array}\right.\)
C. \(\Delta:\left\{\begin{array}{l}x=3+4 t \\ y=2-t \\ z=2\end{array}\right.\)
D. \(\Delta:\left\{\begin{array}{l}x=3-t \\ y=2+3 t \\ z=2+2 t\end{array}\right.\)
A. \(\left\{\begin{array}{l}x=0 \\ y=1 \\ z=t\end{array}\right.\)
B. \(\left\{\begin{array}{l}x=0 \\ y=t \\ z=0\end{array}\right.\)
C. \(\left\{\begin{array}{l}x=t \\ y=0 \\ z=0\end{array}\right.\)
D. \(\left\{\begin{array}{l}x=0 \\ y=0 \\ z=t\end{array}\right.\)
A. \(\frac{x-1}{2}=\frac{y+3}{-4}=\frac{z+2}{1}\)
B. \(\frac{x+1}{-2}=\frac{y-3}{-2}=\frac{z-2}{-4}\)
C. \(\frac{x+1}{2}=\frac{y-3}{-4}=\frac{z-2}{1}\)
D. \(\frac{x-2}{-1}=\frac{y+4}{3}=\frac{z-1}{2}\)
A. \([\vec a, \vec b]=(-3;-3;-6)\)
B. \([\vec a, \vec b]=(3;3;-6)\)
C. \([\vec a, \vec b]=(1;1;-2)\)
D. \([\vec a, \vec b]=(-1;-1;2)\)
A. \(\begin{array}{l} \left| {\left[ {\overrightarrow u ,\overrightarrow v } \right]} \right| = \left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\overrightarrow v } \right) \end{array}\)
B. \(\left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow u = \left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow v = \overrightarrow 0 \)
C. \(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \overrightarrow 0\) thì \(\vec u, \vec v\) cùng phương
D. Nếu \(\vec u\,và\,\vec v\) không cùng phương thì giá của vec tơ \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) vuông góc với mọi mặt phẳng song song với giá của các vec tơ \(\vec u \,và\,\vec v\)
A. \(\frac{1}{2}\)
B. \(\frac{1}{6}\)
C. \(\frac{1}{4}\)
D. \(\frac{1}{3}\)
A. \(\sqrt{45}\over7\)
B. \(270\over7\)
C. \(45\over7\)
D. \(90\over7\)
A. \(\ln 2+1\)
B. \(\ln \frac{3}{2}\)
C. \(\ln 2\)
D. \(\frac{1}{2}\)
A. \(\frac{8}{9}\)
B. \(\frac{1}{9}\)
C. \(\frac{8}{3}\)
D. \(\frac{1}{3}\)
A. \(\ln |\cos x|+C\)
B. \(-\ln |\cos x|+C\)
C. \(\frac{1}{\cos ^{2} x}+C\)
D. \(\frac{-1}{\cos ^{2} x}+C\)
A. x = 1
B. \(x=1-\sqrt{3}\)
C. x = -1
D. x = 0
A. \(\cos x \cdot e^{\sin x}+C\)
B. \(e^{\cos x}+C\)
C. \(e^{\sin x}+C\)
D. \(e^{-\sin x}+C\)
A. \(\frac{(\pi-2) \sqrt{2}}{2}\)
B. \(-\frac{(\pi-2) \sqrt{2}}{2}\)
C. \(\frac{(\pi+2) \sqrt{2}}{2}\)
D. \(-\frac{(\pi+2) \sqrt{2}}{2}\)
A. \(I=-\int_{0}^{\pi / 4} \frac{2 t}{1+t} d t\)
B. \(I=\int_{0}^{\pi / 4} \frac{2 t}{1+t} d t\)
C. \(I=-\int_{\frac{1}{2}}^{1} \frac{2 t}{1+t} d t\)
D. \(I=\int_{\frac{1}{2}}^{1} \frac{2 t}{1+t} d t\)
A. \(\int\limits_{0}^{1} \sin (1-x) d x=\int\limits_{0}^{1} \sin x d x\)
B. \(\int\limits_{0}^{1}(1+x)^{x} d x=0\)
C. \(\int\limits_{0}^{\pi} \sin \frac{x}{2} d x=2 \int\limits_{0}^{\pi / 2} \sin x d x\)
D. \(\int\limits_{-1}^{1} x^{2017}(1+x) d x=\frac{2}{2019}\)
A. -6
B. 6
C. -3
D. 3
A. \(3[F(6)-F(3)]\)
B. \(F(6)-F(3)\)
C. \(3[F(2)-F(1)]\)
D. \(F(2)-F(1)\)
A. 4/3
B. 7/3
C. 8/3
D. 1
A. 3
B. 6
C. 4
D. 5
A. S=2+e
B. S=2-e
C. S=e−2
D. S=e−1
A. \(\frac{{25}}{4}\)
B. \(\frac{{25}}{2}\)
C. \(\frac{{23}}{4}\)
D. \(\frac{{23}}{2}\)
A. \( S = \left| {\mathop \smallint \limits_0^3 \left( {{x^2} - 3x + 2} \right)dx} \right|\)
B. \( S = \mathop \smallint \limits_1^2 \left| {{x^2} - 3x + 2} \right|dx\)
C. \( S = \mathop \smallint \limits_0^3 \left| {{x^2} - 3x + 2} \right|dx\)
D. \( S = \mathop \smallint \limits_1^2 \left| {{x^2} + x - 2} \right|dx\)
A. N(x;y;z)
B. N(x;y;0)
C. N(0;0;z)
D. N(0;0;1)
A. (3;17;−2)
B. (−3;−17;2)
C. (3;−2;5)
D. (3;5;−2)
A. M(1;2;0)
B. M(2;1;0)
C. M(2;0;1)
D. M(0;2;1)
A. -1
B. 1
C. 2
D. -2
A. -1
B. 1
C. 2
D. -2
A. \((P): x+y+z-3=0\)
B. \((P): x+y+2 z-1=0\)
C. \((P): x+y+z-6=0\)
D. \((P): x+y+2 z-6=0\)
A. \((P): 6 x-3 y+5 z=0\)
B. \((P): 2 x-y-3 z=0\)
C. \((P):-6 x+3 y+4 z=0\)
D. \((P): 2 x-y+3 z=0\)
A. \((Q): x-2 y+2 z+1=0\, và \,(Q):-x+2 y-2 z+11=0\)
B. \((Q):-x+2 y-2 z+11=0\)
C. \((Q): x-2 y+2 z+1=0\)
D. \((Q): x-2 y+2 z-11=0\)
A. 4 mặt phẳng.
B. Có vô số mặt phẳng.
C. 1 mặt phẳng.
D. 7 mặt phẳng.
A. 2
B. 1
C. -1
D. -2
A. \(d: \frac{x-1}{1}=\frac{2-y}{1}=\frac{z+1}{2}\)
B. \(d: \frac{x+1}{1}=\frac{y+2}{-1}=\frac{z-1}{2}\)
C. \(d: \frac{x-1}{1}=\frac{y-2}{1}=\frac{z+1}{2}\)
D. \(d: \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z+1}{2}\)
A. \(\left\{\begin{array}{l}x=2 t \\ y=-t \\ z=-1-t\end{array}\right.\)
B. \(\left\{\begin{array}{l}x=4 t \\ y=-2 t \\ z=-1-2 t\end{array}\right.\)
C. \(\left\{\begin{array}{l}x=2 t \\ y=-t \\ z=1+t\end{array}\right.\)
D. \(\left\{\begin{array}{l}x=4 t \\ y=-2 t \\ z=1-2 t\end{array}\right.\)
A. \(d: \frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-3}{3}\)
B. \(d: \frac{x+2}{2}=\frac{y-1}{-3}=\frac{z+3}{1}\)
C. \(d: \frac{x-2}{2}=\frac{y+3}{-1}=\frac{z-1}{3}\)
D. \(d: \frac{x-2}{2}=\frac{y+1}{-3}=\frac{z-3}{1}\)
A. \(\left\{\begin{array}{l}x=1+t \\ y=2-2 t \\ z=-2+3 t\end{array}\right.\)
B. \(\left\{\begin{array}{l}x=-1+t \\ y=-2-2 t \\ z=2+3 t\end{array}\right.\)
C. \(\left\{\begin{array}{l}x=1+t \\ y=2-2 t \\ z=-2\end{array}\right.\)
D. \(\left\{\begin{array}{l}x=-1+t \\ y=-2-2 t \\ z=2\end{array}\right.\)
A. \(\begin{array}{l} \left\{\begin{array}{l} x=-2 t \\ y=10 t ; t \in \mathbb{R} \\ z=4 t \end{array}\right. \end{array}\)
B. \(\left\{\begin{array}{l} x=t-1 \\ y=5 \quad ; t \in \mathbb{R} \\ z=2 \end{array}\right.\) và \(\left\{\begin{array}{l} x=-2 t \\ y=10 t ; t \in \mathbb{R} \\ z=4 t \end{array}\right.\)
C. \(\left\{\begin{array}{l} x=t-1 \\ y=5 \quad ; t \in \mathbb{R} \\ z=2 \end{array}\right.\)
D. \(\left\{\begin{array}{l} x=-m \\ y=5 m ; m \in \mathbb{R} \\ z=2 m \end{array}\right.\)
A. \({{\left( x-2 \right)}^{2}}+{{\left( y-3 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=289\)
B. \({{\left( x-2 \right)}^{2}}+{{\left( y-3 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=298\)
C. \({{\left( x-2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=289\)
D. \({{\left( x-2 \right)}^{2}}+{{\left( y-3 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=289\)
A. \(I\left( 1;-2;2 \right);\text{ }I\left( 5;2;10 \right)\)
B. \(I\left( 1;-2;2 \right);\text{ }I\left( 0;-3;0 \right)\)
C. \(I\left( 5;2;10 \right);\text{ }I\left( 0;-3;0 \right)\)
D. \(I\left( 1;-2;2 \right);\text{ }I\left( -1;2;-2 \right)\)
A. \(R=\sqrt{2}\)
B. R = 2
C. R = 1
D. \(R=\frac{1}{2}\)
A. \(8\pi\)
B. \(4\pi \)
C. \(2\pi\)
D. \(4\pi \sqrt{2}\)
A. 3x+z=0
B. 3x+z+2=0
C. 3x-z=0
D. x-3z=0
A. 8
B. 3
C. \(\sqrt{74}\)
D. 4
A. 42
B. 19
C. 38
D. 12
A. \(\sqrt2\)
B. 1
C. \(1\over2\)
D. \(\sqrt3\)
A. \(140\over 3\)
B. 140
C. 70
D. \(70\over 3\)
A. \(\sqrt{29}\over2\)
B. \(1\over\sqrt{29}\)
C. \(\sqrt{29}\)
D. \(14\over\sqrt{29}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247