Để tính \(I = }{2}} x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:

Câu hỏi :

Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:

A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).   

B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).

C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).

D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)

* Đáp án

B

* Hướng dẫn giải

Phương pháp tích phân từng phần

Đặt \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2x\,dx\\v = \sin x\end{array} \right.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 12 năm 2021

Số câu hỏi: 355

Copyright © 2021 HOCTAP247