Cho tích phân \(I = }{2}} {\sin x\sqrt {8 + \cos x} } \,dx\). Đặt u = 8 + cosx thì kết quả nào sau đây đúng ?

Câu hỏi :

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} } \,dx\). Đặt u = 8 + cosx thì kết quả nào sau đây đúng ?

A. \(I = 2\int\limits_8^9 {\sqrt u du} \).

B. \(I = \dfrac{1}{2}\int\limits_8^9 {\sqrt u \,du} \).

C. \(I = \int\limits_8^9 {\sqrt u \,du} \).

D. \(I = \int\limits_9^8 {\sqrt u \,du} \)

* Đáp án

C

* Hướng dẫn giải

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \to u = 9\\x = \dfrac{\pi }{2} \to u = 8\end{array} \right.\)

Khi đó ta có: \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} } \,dx \)

\(=  - \int\limits_0^{\dfrac{\pi }{2}} {\sqrt {8 + \cos x} } \,d\left( {\cos x + 8} \right)\)

\(=  - \int\limits_0^{\dfrac{\pi }{2}} {\sqrt u } \,d\left( u \right)\)

\( =  - \int\limits_9^8 {\sqrt u } du = \int\limits_8^9 {\sqrt u } \,du\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 12 năm 2021

Số câu hỏi: 355

Copyright © 2021 HOCTAP247