Gọi \(G\left( {4; - 1;3} \right)\) là tọa độ trọng tâm tam giác \(ABC\) với \(A\left( {0;2; - 1} { - 1;3;2} Tìm tọa độ điểm \(C\).

Câu hỏi :

Gọi \(G\left( {4; - 1;3} \right)\) là tọa độ trọng tâm tam giác \(ABC\) với \(A\left( {0;2; - 1} \right),B\left( { - 1;3;2} \right)\). Tìm tọa độ điểm \(C\).

A. \(C\left( { - 1;3;2} \right)\)

B. \(C\left( {11; - 2;10} \right)\)

C. \(C\left( {5; - 6;2} \right)\)

D. \(C\left( {13; - 8;8} \right)\)

* Đáp án

D

* Hướng dẫn giải

Điểm \(G\) là trọng tâm tam giác \(ABC\) nếu:

\(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \dfrac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right.\)

\(\Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.4 - 0 - \left( { - 1} \right) = 13\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.\left( { - 1} \right) - 2 - 3 =  - 8\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.3 - \left( { - 1} \right) - 2 = 8\end{array} \right. \)

\(\Rightarrow C\left( {13; - 8;8} \right)\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 12 năm 2021

Số câu hỏi: 355

Copyright © 2021 HOCTAP247