Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là u {u'} ,M \in d,M' \in d'\). Khi đó \(d \equiv d'\) nếu:

Câu hỏi :

Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\). Khi đó \(d \equiv d'\) nếu:

A. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)

B.  \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)

C. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)

D. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)

* Đáp án

C

* Hướng dẫn giải

\(d \equiv d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đôi một cùng phương \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 12 năm 2021

Số câu hỏi: 355

Copyright © 2021 HOCTAP247