Cho {f(x)\,dx = 9} \). Tính tích phân \(I = {f(3x + 1)\,dx} \) .

Câu hỏi :

Cho \(\int\limits_1^4 {f(x)\,dx = 9} \). Tính tích phân \(I = \int\limits_0^1 {f(3x + 1)\,dx} \) . 

A. I = 27

B. I = 3

C. I = 9

D. I = 1

* Đáp án

B

* Hướng dẫn giải

Đặt \(u = 3x + 1 \)

\(\Rightarrow du = d\left( {3x + 1} \right) = 3\,dx \)

\(\Leftrightarrow dx = \dfrac{{du}}{3}\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \to u = 1\\x = 1 \to u = 4\end{array} \right.\)

Khi đó ta có: \(I = \dfrac{1}{3}\int\limits_1^4 {f\left( u \right)\,} du = \dfrac{1}{3}\int\limits_1^4 {f\left( x \right)\,dx}  \)\(\,= \dfrac{1}{3}.9 = 3.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 12 năm 2021

Số câu hỏi: 355

Copyright © 2021 HOCTAP247