Số nghiệm của phương trình log3|x^2-căn(2)x|=log5(x^2-căn(2)x+2) là

Câu hỏi :

Số nghiệm của phương trình log3x2-2x=log5x2-2x+2 là

A. 3

B. 2

C. 1

D4

* Đáp án

B

* Hướng dẫn giải

Chọn B.

Điều kiện: 

Đặt  x2-2x=t, khi đó phương trình trở thành 

Đặt  suy ra 

+Với t = 3a ta có

Xét hàm số , có 

Suy ra f(x)  là hàm số nghịch biến trên R.

Khi đó phương trình (1) có nghiệm duy nhất a=1t=3x2-2x=3x2-2x-3=0có hai nghiệm phân biệt.

+Với t = -3a  ta có -3a + 2 = 5a hay 5a + 3a – 2 = 0    (2)

Xét hàm số g(a) = 5a + 3a - 2  có g’(a) = 5aln5 + 3aln3 > 0 mọi a.

Suy ra f(a)  là hàm số đồng biến trên  R.

Khi đó phương trình (2) có nghiệm duy nhất a=0t=-1x2-2x=-1x2-2x+1=0  vô nghiệm

Vậy phương trình đã cho có hai nghiệm phân biệt.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

200 câu trắc nghiệm Hàm số mũ và Logarit nâng cao !!

Số câu hỏi: 198

Copyright © 2021 HOCTAP247