Bất phương trình lg^2 – mlgx + m + 3 ≤ 0 có nghiệm x > 1 khi giá trị của m là

Câu hỏi :

Bất phương trình log2x-mlogx+m+30 có nghiệm x > 1 khi giá trị của m là:

A. -;-3[6;+)

B. m < -3.

C. m > 6.

D. 3 < m < 6.

* Đáp án

A

* Hướng dẫn giải

Chọn A.

Xét phương trình: log2x-mlogx+m+30

Điều kiện x>1.

Đặt t = logx

Với x > 0 thì t = logx > 0

Khi đó phương trình đã cho trở thành: t2-mt+m+30

t2+3mt-mt2+3mt-1*

TH1: Với t - 1 > 0 hay t > 1

mt2+3t-1=f(t)

f'(t)=2tt-1-t2+3t-12=t2-2t-3t-12

f't=0t2-2t-3=0t=-1t=3

BBT

TH2: Với t-1 <0  t <1

Khi đó (*) trở thành: mt2+3t-1

Xét hàm số ft=t2+3t-1 vi 0<t<1

f'(t)=2tt-1-t2+3t-12=t2-2t-3t-12<0t0;1

minft=f1=

:

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

200 câu trắc nghiệm Hàm số mũ và Logarit nâng cao !!

Số câu hỏi: 198

Copyright © 2021 HOCTAP247