Trong không gian Oxyz, cho ba điểm A(1;1;1), B(-1;2;0), C(2;-3;2)

Câu hỏi :

Trong không gian Oxyz, cho ba điểm A(1;1;1), B(-1;2;0), C(2;-3;2). Tập hợp tất cả các điểm M cách đều ba điểm A, B, C là một đường thẳng d. Phương trình tham số của đường thẳng d là:

* Đáp án

* Hướng dẫn giải

Ta thấy  không cùng phương nên ba điểm A, B, C không thẳng hàng.

M cách đều hai điểm A, B  nên điểm M nằm trên mặt trung trực của AB. M cách đều hai điểm B, C nên điểm M nằm trên mặt trung trực của B, C.

Do đó tập hợp tất cả các điểm m cách đều ba điểm A, B, C giao tuyến của hai mặt trung trực của AB và BC.

Gọi (P), (Q) lần lượt là các mặt phẳng trung trực của AB và BC. K(0; 3/2; 1/2) là trung điểm AB; N(1/2; -1/2; 1) là trung điểm BC.

(P) đi qua K và nhận  làm véctơ pháp tuyến nên (P):  hay (P): 2x - y + z + 1 = 0

(Q) đi qua N và nhận  làm véctơ pháp tuyến nên (Q):  hay (Q): 3x - 5y +2z - 6 = 0

Ta có Nên d có véctơ chỉ phương

Cho y = 0 ta sẽ tìm được x = -8, z = 15 nên (-8; 0; 15) ∈ d. Vậy .

Copyright © 2021 HOCTAP247