Trong không gian Oxyz, cho điểm A(1;0;-1), mặt phẳng (P): x + y - z - 3 = 0

Câu hỏi :

Trong không gian Oxyz, cho điểm A(1;0;-1), mặt phẳng (P): x + y - z - 3 = 0. Mặt cầu (S) có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho chu vi tam giác OIA bằng 6 + √2. Phương trình mặt cầu (S) là:

A. (x + 2)(y - 2) + (z + 1) = 9 và (x + 1) + (y - 2) + (z + 2) = 9 

B. (x - 2)(y - 2) + (z - 1) = 9 và x + y + (z + 3) = 9

C. (x + 2)(y - 2) + (z + 1) = 9 và (x + 1) + (y - 2) + (z + 2) = 9 

D. (x + 1)(y - 2) + (z + 2) = 9 và (x - 2) + (y - 2) + (z - 1) = 9 

* Đáp án

D

* Hướng dẫn giải

Chọn D

Giả sử (S): xy + z - 2ax - 2by - 2cz + d = 0 (ab+ c2  - d  > 0)

 và tâm I (a;b;c) ∈ (P) =>  a + b - c - 3 = 0 (1)

(S) qua A và O nên 

Suy ra 2 - 2a + 2c = 0 (2)

Lấy (1) nhân 2 rồi cộng vế theo vế với (2) ta suy ra b = 2Từ đó, suy ra I (a; 2; a-1)

Chu vi tam giác OAI bằng 6 + √2 nên OI + OA + AI = 6 + √2

+ Với a = -1 => I(-1; 2; -2) => R = 3Do đó:

+ Với a = 2 => I (2;2;1) => R = 3Do đó:

Copyright © 2021 HOCTAP247