Trong không gian Oxyz, cho ba điểm A (3; 0; 0), B (1; 2; 1) và C (2; -1; 2)

Câu hỏi :

Trong không gian Oxyz, cho ba điểm A (3; 0; 0), B (1; 2; 1) và C (2; -1; 2). Biết mặt phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vectơ pháp tuyến là (10; a; b). Tổng a + b là:

A. -2

B. 2

C. 1

D. -1

* Đáp án

B

* Hướng dẫn giải

Chọn B

Gọi tâm mặt cầu nội tiếp tứ diện OABC là I (x; y; z). Ta có phương trình (OBC): x - z = 0. Phương trình mặt phẳng (ABC): 5x + 3y + 4z - 15 = 0. Tâm I cách đều hai mặt phẳng (OBC) và (ABC) suy ra:

d(I; (OBC)) = d(I; (ABC)) 

x-z2=5x+3y+4z-1552

y+3z-5=0    α10x+3y-z-15= 0  β 

Nhận xét: hai điểm A và O nằm về cùng phía với (α) nên loại (α). Hai điểm A và O nằm về khác phía (β) nên nhận (β). Thấy ngay một vectơ pháp tuyến là (10; a; b) thì a = 3, b = -1. Vậy a + b = 2

Copyright © 2021 HOCTAP247