Trong không gian Oxyz cho mặt cầu (S): (x-3)^2+ (y-1)^2+z^2 = 4

Câu hỏi :

Trong không gian Oxyz cho mặt cầu (S): (x - 3)² + (y - 1)² + z² = 4 và đường thẳng d:x=1+2ty=-1+t , tz=-t . Mặt phẳng chứa d và cắt (S) theo một đường tròn có bán kính nhỏ nhất có phương trình là:

A. 3x-2y-4z-8=0

B. y+z+1=0 

C. x-2y-3=0 

D. x+3y+5z+2=0

* Đáp án

B

* Hướng dẫn giải

Chọn B

Mặt cầu (S) có tâm I (3;1;0) và bán kính là R = 2.

Gọi H (1+2t;-1+t;-t) là hình chiếu của I trên d.

Gọi (Q) là mặt phẳng chứa d.

Bán kính đường tròn giao tuyến của mặt phẳng chứa d và mặt cầu (S) là , suy ra r nhỏ nhất khi d (I, (Q)) lớn nhất.

Gọi M là hình chiếu của I trên (Q).

Ta có d (I, (Q)) = IM IH  suy ra d (I, (Q)) lớn nhất khi d (I, (Q)) = IH, lúc đó mặt phẳng (Q) qua H (3;0;-1) và có một véc tơ pháp tuyến là 

Phương trình mặt phẳng (Q): y+z+1=0.

Copyright © 2021 HOCTAP247