Trong không gian Oxyz, cho mặt cầu (S): (x-1)^2+ (y+2)^2+ (z-3)^2=27

Câu hỏi :

Trong không gian Oxyz, cho mặt cầu (S): (x -1)²+ (y + 2)² + (z - 3)² = 27. Gọi (α) là mặt phẳng đi qua hai điểm A (0; 0; -4), B (2; 0; 0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là là đường tròn (C) có thể tích lớn nhất. Biết rằng (α): ax + by - z + c = 0, khi đó a - b + c bằng:

A. -4.

B. 8.

C. 0.

D. 2.

* Đáp án

* Hướng dẫn giải

Mặt cầu (S) có tâm I (1;-2;3) và bán kính R= 33.

Vì (α): ax + by - z + c = 0 đi qua hai điểm A (0; 0; -4), B (2; 0; 0) nên c = -4 và a = 2.

Suy ra (α): 2x + by - z - 4 = 0.

Gọi H là hình chiếu của I lên (α)

Đặt IH = x, với 0 < x < 33 ta có

Thể tích khối nón là

Copyright © 2021 HOCTAP247