Trong không gian Oxyz, cho mặt phẳng (P):x+y+z-1=0 và hai điểm A (1;-3;0), B (5;-1;-2)

Câu hỏi :

Trong không gian Oxyz, cho mặt phẳng (P):x+y+z-1=0 và hai điểm A (1;-3;0), B (5;-1;-2). Điểm M (a;b;c) nằm trên (P) và |MA – MB| lớn nhất. Giá trị abc bằng:

A. 

B. 12 

C. 24. 

D. -24.

* Đáp án

* Hướng dẫn giải

 

Thay tọa độ điểm A và B vào vế trái của phương trình mặt phẳng (P) ta có:

1+ (-3)+0-1=-3<0 và 5+ (-1)+ (-2)-1=1>0

Nên suy ra A và B nằm khác phía so với mặt phẳng (P).

Gọi  là điểm đối xứng với B qua (P). Ta có:

|MA – MB| = |MA – MB’| AB’.

Do đó |MA – MB| lớn nhất là bằng AB' khi và chỉ khi M là giao điểm của đường thẳng AB' với mặt phẳng (P).

Ta có  nên đường thẳng AB' có véc-tơ chỉ phương . Phương trình đường thẳng AB' là 

Tọa độ điểm M là nghiệm hệ 

Như vậy M (6;-1;-4) => abc = 6 (-1).(-4) = 24.

Copyright © 2021 HOCTAP247