Trong không gian với hệ tọa độ Oxyz, cho đường thẳng và mặt cầu (S): x^2+y^2+z^2+2x-6y+4z-15=0

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x10=y+28=z-11  và mặt cầu (S): x²+y²+z²+2x-6y+4z-15=0. Mặt phẳng chứa d, tiếp xúc với (S) và cắt trục Oz tại điểm có cao độ lớn hơn 3 có phương trình là:

A. 2x-3y+4z-10=0.

B. 2x-3y+4z-12=0.

C. 3x-4y+2z-12=0.

D. 3x-4y+2z-10=0.

* Đáp án

D

* Hướng dẫn giải

Chọn D

Mặt cầu (S) có tâm I (-1;3;-2) và bán kính R = √29.

Mặt phẳng (P) chứa d có dạng m (4x-5y-10)+n (y-8z+10)=0

ó 4mx + (n – 5m)y – 8nz + 10n – 10m = 0 với m²+n²>0.

(P) tiếp xúc với (S) nên d (I, (P)) = R

Trường hợp 1: m = -n, phương trình mặt phẳng (P): 2x - 3y + 4z - 10 = 0.

Khi đó giao điểm của (P) và Oz có tọa độ là (0; 0; 52) (loại vì 52<3)

Trường hợp 2: m = -3n, phương trình mặt phẳng (P): 3x - 4y + 2z - 10 = 0.

Khi đó giao điểm của (P) và Oz có tọa độ là (0; 0; 5) (nhận vì 5 > 3).

Copyright © 2021 HOCTAP247