Trong không gian Oxyz, cho mặt cầu (S): (x-1)^2+ (y-2)^2+ (z-3)^2=25

Câu hỏi :

Trong không gian Oxyz, cho mặt cầu (S): (x - 1)² + (y - 2)² + (z - 3)² = 25 và hai điểm A (3;-2;6), B (0;1;0). Mặt phẳng (P): ax + by + cz - 2 = 0 chứa đường thẳng AB và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính giá trị của biểu thức M = 2a + b - c.

A. M = 2. 

B. M = 3. 

C. M = 1. 

D. M = 4.

* Đáp án

C

* Hướng dẫn giải

Chọn C

* Ta có: VTPT của mặt phẳng (P) là n=a; b; c  trong đó a;b;c không đồng thời bằng 0. Mặt cầu (S) có tâm I (1;2;3) và bán kính R=5.

Do mặt phẳng (P) chứa đường thẳng AB nên ta có:

* Bán kính đường tròn giao tuyến là  trong đó

Để bán kính đường tròn nhỏ nhất điều kiện là d lớn nhất  lớn nhất  lớn nhất.

Coi hàm số  là một phương trình ẩn c ta được

5mc²-2 (4m+1)c+ (8m-3)=0,

phương trình có nghiệm c  lớn nhất

<=> c = 1 => a = 0 => M = 2a + b – c = 1

Copyright © 2021 HOCTAP247