Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều

Câu hỏi :

Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD. Tính côsin của góc giữa hai mặt phẳng (GMN) và (ABCD).

* Đáp án

* Hướng dẫn giải

Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó

Ta có mặt phẳng (ABCD) có vectơ pháp tuyến là , mặt phẳng (GMN) có vectơ pháp tuyến là

Gọi (α) là góc giữa hai mặt phẳng (GMN) và (ABCD), ta có

Gọi φ là góc giữa (GMN) và (ABCD)

Gọi E, F lần lượt là hình chiếu của M và N lên (ABCD). Suy ra E, F lần lượt là trung điểm của HC, HD.

Gọi H, I lần lượt là trung điểm của AB, CD.

Mà d (SIH) nên góc giữa góc giữa hai mặt phẳng (GMN) và (ABCD) là

Copyright © 2021 HOCTAP247