Trong không gian Oxyz, mặt phẳng (anpha) đi qua M (1;1;4) cắt các tia Ox, Oy, Oz

Câu hỏi :

Trong không gian Oxyz, mặt phẳng (α) đi qua M (1;1;4) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C phân biệt sao cho tứ diện OABC có thể tích nhỏ nhất. Tính thể tích nhỏ nhất đó.

A. 72. 

B. 108 

B. 18. 

D. 36.

* Đáp án

B

* Hướng dẫn giải

Chọn B

Đặt A= (a;0;0), B= (0;b;0), C= (0;0;c) với a, b, c>0.

Khi đó phương trình mặt phẳng (α) là 

Vì (α) đi qua M (1;1;4) nên 

Thể tích của tứ diện OABC là 

Áp dụng bất đẳng thức AM - GM ta có 

Dấu bằng xảy ra khi a=b=3 ; c=12.

Vậy tứ diện OABC có thể tích nhỏ nhất bằng 

Copyright © 2021 HOCTAP247