Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như hình vẽ: Đồ thị hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu điểm cực t...

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như hình vẽ: 

A. 4

B. 3

C. 2

D. 1

* Đáp án

A

* Hướng dẫn giải

Dựa vào bảng xét dấu của hàm số \(y = f\left( x \right)\) ta thấy \(f'\left( x \right)\) đổi dấu qua \(x = {\rm{\;}} - 1,{\mkern 1mu} {\mkern 1mu} x = 0,{\mkern 1mu} {\mkern 1mu} x = 2\) và \(x = 4\)

\( \Rightarrow 4\) điểm này là \(4\) điểm cực trị của hàm số \(y = f\left( x \right).\)

Vậy hàm số \(y = f\left( x \right)\) có \(4\) điểm cực trị.

Chọn A.

Copyright © 2021 HOCTAP247