Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Với các giá trị nào của tham số m thì phương trình \(f\left( {\left| x \right|} \right) = 3m + 1\) có bốn nghiệm phân b...

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Với các giá trị nào của tham số m thì phương trình  \(f\left( {\left| x \right|} \right) = 3m + 1\) có bốn nghiệm phân biệt.

A. \(m > 2.\)  

B. \(m < {\rm{\;}} - 1.\)

C. \( - 1 < m <  - \dfrac{1}{3}.\)   

D. \(1 < m < 2.\) 

* Đáp án

C

* Hướng dẫn giải

Dựa vào đồ thị hàm số \(y = f\left( x \right)\) ta suy ra được đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) như sau:

 

Số nghiệm của phương trình \(f\left( {\left| x \right|} \right) = 3m + 1\) là số giao điểm của đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) và đường thẳng \(y = 3m + 1\) song song với trục hoành. Do đó để phương trình \(f\left( {\left| x \right|} \right) = 3m + 1\) có 4 nghiệm phân biệt thì \( - 2 < 3m + 1 < 0 \Leftrightarrow {\rm{\;}} - 1 < m < {\rm{\;}} - \dfrac{1}{3}\).

Chọn C.

Copyright © 2021 HOCTAP247