Cho hàm số \(y = f\left( x \right)\) liên tục trên R và thỏa mãn \({f^3}\left( x \right) + f\left( x \right) = x\) với m�

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) liên tục trên R và thỏa mãn \({f^3}\left( x \right) + f\left( x \right) = x\) với mọi \(x \in R.\) Tính \(I = \int\limits_0^2 {f\left( x \right){\rm{d}}x} .\)

A. \(I =  - \frac{4}{5}.\)

B. \(I =  \frac{4}{5}.\)

C. \(I =  - \frac{5}{4}.\)

D. \(I =   \frac{5}{4}.\)

* Đáp án

D

* Hướng dẫn giải

Đặt \(u = f\left( x \right)\), ta thu được \({u^3} + u = x.\) Suy ra \(\left( {3{u^2} + 1} \right){\rm{d}}u = {\rm{d}}x.\)

Từ \({u^3} + u = x\), ta đổi cận \(\left\{ \begin{array}{l}
x = 0 \to u = 0\\
x = 2 \to u = 1
\end{array} \right..\) Khi đó \(I = \int\limits_0^1 {u\left( {3{u^2} + 1} \right){\rm{d}}u}  = \frac{5}{4}.\)

Copyright © 2021 HOCTAP247