Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như sau:

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như sau: 

A. 1

B. 4

C. 0

D. 2

* Đáp án

D

* Hướng dẫn giải

Xét phương trình \(2f\left( x \right) - 7 = 0\).  

\( \Leftrightarrow f\left( x \right) = \dfrac{7}{2}\).

Từ bảng biến thiên ta thấy đường thẳng \(y = \dfrac{7}{2}\) cắt đồ thị tại 2 điểm phân biệt nên phương trình trên có 2 nghiệm phân biệt. Vậy hàm số \(y = \dfrac{1}{{2f\left( x \right) - 7}}\) có 2 đường tiệm cận đứng.

Chọn D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Nguyễn Du

Số câu hỏi: 40

Copyright © 2021 HOCTAP247