Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật \(AD = a\), \(AB = a\sqrt 3 \). Cạnh bên SA vuông góc với đáy và SA=2a. Tính khoảng cách d từ điểm C đến mặt phẳng (SBD).

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật \(AD = a\), \(AB = a\sqrt 3 \). Cạnh bên SA vuông góc với đáy và SA=2a. Tính khoảng cách d từ điểm C đến mặt phẳng (SBD).

A.  \({\rm{d}} = \dfrac{{2{\rm{a}}}}{{\sqrt 5 }}\)  

B. \({\rm{d}} = \dfrac{{a\sqrt {57} }}{{19}}\)

C. \({\rm{d}} = \dfrac{{2a\sqrt {57} }}{{19}}\)  

D. \(d = \dfrac{{a\sqrt 5 }}{2}\)

* Đáp án

C

* Hướng dẫn giải

Ta có \(AC\) cắt \(\left( {SBD} \right)\) tại trung điểm I của AC

\( \Rightarrow \dfrac{{d\left( {A,\left( {SBD} \right)} \right)}}{{d\left( {C,\left( {SBD} \right)} \right)}} = \dfrac{{IA}}{{IC}} = 1\)

Kẻ \(AH \bot BD,AK \bot SH\)

\(\begin{array}{l} \Rightarrow BD \bot \left( {SAH} \right) \Rightarrow \left( {SBD} \right) \bot \left( {SAH} \right)\\AK \bot SH = \left( {SBD} \right) \cap \left( {SAH} \right)\\ \Rightarrow AH \bot \left( {SBD} \right)\end{array}\)

Ta có \(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{D^2}}} = \dfrac{1}{{3{a^2}}} + \dfrac{1}{{{a^2}}} = \dfrac{4}{{3{a^2}}}\)

\(\begin{array}{l}\dfrac{1}{{A{K^2}}} = \dfrac{1}{{A{H^2}}} + \dfrac{1}{{S{A^2}}} = \dfrac{4}{{3{a^2}}} + \dfrac{1}{{4{a^2}}} = \dfrac{{19}}{{12{a^2}}}\\ \Rightarrow AK = \dfrac{{2a\sqrt {57} }}{{19}}\end{array}\)

Chọn C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Nguyễn Du

Số câu hỏi: 40

Copyright © 2021 HOCTAP247