Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right)\) thỏa mãn \(f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right)....

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right)\) thỏa mãn \(f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right).g\left( x \right) + 2018\), trong đó \(g\left( x \right) < 0\forall x \in \mathbb{R}\). Hàm số \(y = f\left( {1 - x} \right) + 2018x + 2019\) đồng biến trên khoảng nào?

A. \(\left( {1; + \infty } \right)\)   

B. \(\left( {0;3} \right)\)

C. \(\left( {3; + \infty } \right)\)     

D. \(\left( { - \infty ;3} \right)\) 

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l}y' =  - f'\left( {1 - x} \right) + 2018 > 0\\ \Leftrightarrow  - \left[ {x\left( {3 - x} \right).g\left( {1 - x} \right) + 2018} \right] + 2018 > 0\\ \Leftrightarrow x\left( {3 - x} \right)g\left( {1 - x} \right) < 0\left( 1 \right)\end{array}\)

Mà \(g\left( x \right) < 0\forall x \in \mathbb{R} \Rightarrow g\left( {1 - x} \right) < 0\)

\(\left( 1 \right) \Leftrightarrow x\left( {3 - x} \right) > 0 \Leftrightarrow 0 < x < 3\)

Chọn B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Nguyễn Du

Số câu hỏi: 40

Copyright © 2021 HOCTAP247