Cho hàm số \(f\left( x \right) = {\log _{\dfrac{1}{3}}}\left( {1 - {x^2}} \right).\) Biết tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là khoảng \(\left( {a;b} \right...

Câu hỏi :

Cho hàm số \(f\left( x \right) = {\log _{\dfrac{1}{3}}}\left( {1 - {x^2}} \right).\) Biết tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là khoảng \(\left( {a;b} \right).\) Tính \(S = a + 2b.\)

A. \(S =  - 1.\)    

B. \(S = 2.\)

C. \(S =  - 2.\)    

D. \(S = 1.\)

* Đáp án

A

* Hướng dẫn giải

Xét hàm số: \(f\left( x \right) = {\log _{\dfrac{1}{3}}}\left( {1 - {x^2}} \right)\)

TXĐ: \(D = \left( { - 1;\,\,1} \right).\)

Ta có: \(f'\left( x \right) = \dfrac{{ - 2x}}{{1 - {x^2}}}.\ln \dfrac{1}{3} = \dfrac{{2x}}{{{x^2} - 1}}\ln \dfrac{1}{3}.\)

\(\begin{array}{l} \Rightarrow f'\left( x \right) > 0 \Leftrightarrow \dfrac{{2x}}{{{x^2} - 1}}\ln \dfrac{1}{3} > 0\\ \Leftrightarrow \dfrac{{2x}}{{{x^2} - 1}} < 0\,\,\,\,\,\left( {do\,\,\,\ln \dfrac{1}{3} < 0} \right)\\ \Leftrightarrow 2x < 0\,\,\,\,\,\left( {do\,\,\,\,{x^2} - 1 > 0} \right)\\ \Leftrightarrow x < 0.\end{array}\) 

Kết hợp với điều kiện ta được nghiệm của bất phương trình là: \( - 1 < x < 0.\)

\( \Rightarrow {S_0} = \left( { - 1;\,\,0} \right) \Rightarrow \left\{ \begin{array}{l}a =  - 1\\b = 0\end{array} \right. \Rightarrow S = a + 2b =  - 1 + 2.0 =  - 1.\)

Chọn  A.

Copyright © 2021 HOCTAP247