Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh SA vuông góc với mặt phẳng (ABCD), góc giữa cạnh SD và mặt phẳng (ABCD) bằng \(60^\circ \). Thể tích của khối chóp đã cho bằn...

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh SA vuông góc với mặt phẳng (ABCD), góc giữa cạnh SD và mặt phẳng (ABCD) bằng \(60^\circ \). Thể tích của khối chóp đã cho bằng

A. \(\sqrt 3 {a^3}\)     

B. \(\dfrac{{\sqrt 3 {a^3}}}{6}\) 

C. \(\dfrac{{\sqrt 3 {a^3}}}{3}\)   

D. \(\dfrac{{\sqrt 3 {a^3}}}{9}\) 

* Đáp án

C

* Hướng dẫn giải

Ta có: \(SA \bot \left( {ABCD} \right) \Rightarrow AD\) là hình chiếu của \(SD\) trên \(\left( {ABCD} \right).\)

\(\begin{array}{l} \Rightarrow \angle \left( {SD,\,\,\,\left( {ABCD} \right)} \right) = \angle SDA = {60^0}.\\ \Rightarrow SA = AD.\tan {60^0} = a\sqrt 3 .\\ \Rightarrow {V_{SABCD}} = \dfrac{1}{3}SA.{S_{ABCD}} = \dfrac{1}{3}.a\sqrt 3 .{a^2} = \dfrac{{{a^3}\sqrt 3 }}{3}.\end{array}\)

Chọn  C.

Copyright © 2021 HOCTAP247