Cho hàm số \(\dfrac{{2{\rm{x}} + 1}}{{x - 2}}\) . Tìm khẳng định sai.

Câu hỏi :

Cho hàm số \(\dfrac{{2{\rm{x}} + 1}}{{x - 2}}\) . Tìm khẳng định sai.

A. Đồ thị hàm số có hai đường tiệm cận.

B. Hàm số nghich biến trên từng khoảng xác định.

C. \(\mathop {\lim }\limits_{x \to {2^ - }} y =  + \infty ;\mathop {\lim }\limits_{x \to {2^ + }} y =  - \infty \). 

D. Hàm số không có cực trị. 

* Đáp án

C

* Hướng dẫn giải

Ta có: \(y = \dfrac{{2x + 1}}{{x - 2}}\)

TXĐ: \(D = \mathbb{R}\backslash \left\{ 2 \right\}.\)

Có: \(y' = \dfrac{{ - 2.2 - 1}}{{{{\left( {x - 2} \right)}^2}}} = \dfrac{{ - 5}}{{{{\left( {x - 2} \right)}^2}}} < 0\,\,\forall x \in D\)

\( \Rightarrow \) Hàm số nghịch biến trên \(\left( { - \infty ;\,\,2} \right)\) và \(\left( {2; + \infty } \right).\)

\( \Rightarrow \) Đáp án B đúng.

Đồ thị hàm số có TCĐ: \(x = 2\) và TCN: \(y = 2.\)

\( \Rightarrow \) Đáp án A đúng.

Hàm số bậc nhất trên bậc nhất không có cực trị.

\( \Rightarrow \) Đáp án D đúng.

Chọn  C.

Copyright © 2021 HOCTAP247