Đồ thị hàm số \(y = \dfrac{{x - 1}}{{\sqrt {3{{\rm{x}}^2} + 1} }}\) có bao nhiêu đường tiệm cận ngang?

Câu hỏi :

Đồ thị hàm số \(y = \dfrac{{x - 1}}{{\sqrt {3{{\rm{x}}^2} + 1} }}\)  có bao nhiêu đường tiệm cận ngang?

A. 3

B. 0

C. 2

D. 1

* Đáp án

C

* Hướng dẫn giải

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x - 1}}{{\sqrt {3{x^2} + 1} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{1 - \dfrac{1}{x}}}{{\sqrt {3 + \dfrac{1}{{{x^2}}}} }} = \dfrac{1}{{\sqrt 3 }}\)

\( \Rightarrow y = \dfrac{1}{{\sqrt 3 }}\) là đường TCN của đồ thị hàm số.

 \(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x - 1}}{{\sqrt {3{x^2} + 1} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{1 - \dfrac{1}{x}}}{{ - \sqrt {3 + \dfrac{1}{{{x^2}}}} }} =  - \dfrac{1}{{\sqrt 3 }}\)

\( \Rightarrow y =  - \dfrac{1}{{\sqrt 3 }}\) là đường TCN của đồ thị hàm số.

Vậy đồ thị hàm số có 2 đường TCN.

Chọn  C.

Copyright © 2021 HOCTAP247