A. Mặt cầu bán kính AB.
B. Hình tròn bán kính AB.
C. Mặt cầu đường kính AB.
D. Hình tròn đường kính AB.
C
Ta có: \(\overrightarrow {MA} .\overrightarrow {MB} = 0\)
Gọi \(I\) là trung điểm của \(AB.\)
\(\begin{array}{l} \Rightarrow \overrightarrow {MA} .\overrightarrow {MB} = 0 \Leftrightarrow \left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right) = 0\\ \Leftrightarrow {\overrightarrow {MI} ^2} + \overrightarrow {MI} .\overrightarrow {IB} + \overrightarrow {IA} .\overrightarrow {MI} + \overrightarrow {IA} .\overrightarrow {IB} = 0\\ \Leftrightarrow M{I^2} + \overrightarrow {MI} \left( {\overrightarrow {IB} + \overrightarrow {IA} } \right) + IA.IB.\cos \left( {\overrightarrow {IA} ,\,\overrightarrow {IB} } \right) = 0\\ \Leftrightarrow M{I^2} + I{A^2}\cos {180^0} = 0\\ \Leftrightarrow M{I^2} = I{A^2}\\ \Leftrightarrow MI = IA\end{array}\)
Vậy tập hợp điểm \(M\) thỏa mãn bài toán là mặt cầu tâm \(I,\) đường kính \(AB.\)
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247