Cho hàm số \(y = - {x^3} + 3{{\rm{x}}^2} + 2\). Tìm phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của đồ thị.

Câu hỏi :

Cho hàm số \(y =  - {x^3} + 3{{\rm{x}}^2} + 2\). Tìm phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của đồ thị.

A. \(y = 3{\rm{x}} + 1\)    

B. \(y = 3{\rm{x}} - 1\) 

C. \(y =  - 3{\rm{x}} + 1\) 

D. \(y =  - 3{\rm{x}} - 1\) 

* Đáp án

A

* Hướng dẫn giải

Ta có: \(y = \dfrac{{2x + 1}}{{x - 1}}.\)

TXĐ:\(D = \mathbb{R}\backslash \left\{ 1 \right\}.\)

\( \Rightarrow y' = \dfrac{{2.\left( { - 1} \right) - 1}}{{{{\left( {x - 1} \right)}^2}}} = \dfrac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} < 0\,\,\forall x \in D\)

\( \Rightarrow \)  Hàm số đã cho nghịch biến trên \(\left( { - \infty ;\,\,1} \right)\) và \(\left( {1; + \infty } \right).\)

Chọn A.

Copyright © 2021 HOCTAP247