Cho \({\log _2}\left( {3x - 1} \right) = 3.\) Giá trị biểu thức \(K = {\log _3}\left( {10x - 3} \right) + {2^{{{\log }_2}\left( {2x - 1} \right)}}\) bằng

Câu hỏi :

Cho \({\log _2}\left( {3x - 1} \right) = 3.\) Giá trị biểu thức \(K = {\log _3}\left( {10x - 3} \right) + {2^{{{\log }_2}\left( {2x - 1} \right)}}\) bằng

A. \(8.\)   

B. \(35.\) 

C. \(32.\) 

D. \(14.\) 

* Đáp án

A

* Hướng dẫn giải

Ta có: \({\log _2}\left( {3x - 1} \right) = 3 \Leftrightarrow \left\{ \begin{array}{l}x > \dfrac{1}{3}\\3x - 1 = {2^3}\end{array} \right. \Rightarrow x = 3\)

Thay \(x = 3\) vào \(K\) ta được:

\(\begin{array}{l}K = {\log _3}\left( {10.3 - 3} \right) + {2^{{{\log }_2}\left( {2.3 - 1} \right)}}\\ = {\log _3}27 + 5 = 3 + 5 = 8\end{array}\)

Chọn A.

Copyright © 2021 HOCTAP247