Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 4a,\,AC = 3a.\) Quay \(\Delta ABC\) xung quanh cạnh \(AB,\) đường gấp khúc \(ACB\) tạo nên một hình nón tròn xoay, Diện tích xung quanh...

Câu hỏi :

Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 4a,\,AC = 3a.\) Quay \(\Delta ABC\) xung quanh cạnh \(AB,\) đường gấp khúc \(ACB\) tạo nên một hình nón tròn xoay, Diện tích xung quanh của hình nón đó là

A. \({S_{xq}} = 24\pi {a^2}.\)    

B. \({S_{xq}} = 12\pi {a^2}.\) 

C. \({S_{xq}} = 30\pi {a^2}.\)  

D. \({S_{xq}} = 15\pi {a^2}.\) 

* Đáp án

D

* Hướng dẫn giải

Khi quay tam giác \(ABC\) vuông tại \(A\) quanh cạnh \(AB\) ta được hình nón có chiều cao \(AB,\) bán kính đáy \(AC\) và đường sinh \(BC.\)

Ta có: \(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {16{a^2} + 9{a^2}}  = 5a\)

Diện tích xung quanh của hình nón tạo thành là: \({S_{xq}} = \pi .AC.BC = \pi .3a.5a = 15\pi {a^2}.\)

Chọn D.

Copyright © 2021 HOCTAP247