Cho hàm số \(y = \dfrac{{x - m}}{{x + 1}}\) thỏa \(\mathop {\min }\limits_{\left[ {0;1} \right]} y + \mathop {\max }\limits_{\left[ {0;1} \right]} y = 5.\) Tham số thực \(m\) thuộc...

Câu hỏi :

Cho hàm số \(y = \dfrac{{x - m}}{{x + 1}}\) thỏa \(\mathop {\min }\limits_{\left[ {0;1} \right]} y + \mathop {\max }\limits_{\left[ {0;1} \right]} y = 5.\) Tham số thực \(m\) thuộc tập nào dưới đây ?

A. \(\left[ {2;4} \right).\) 

B. \(\left( { - \infty ;2} \right).\) 

C. \(\left[ {4;6} \right).\)  

D. \(\left[ {6; + \infty } \right).\) 

* Đáp án

B

* Hướng dẫn giải

Hàm số \(y = \dfrac{{x - m}}{{x + 1}}\) liên tục trên \(\left[ {0;1} \right],\,y' = \dfrac{{m + 1}}{{{{\left( {x + 1} \right)}^2}}} \cdot \)

- Nếu \(m \ne  - 1\) thì \(\mathop {\min }\limits_{\left[ {0;1} \right]} y + \mathop {\max }\limits_{\left[ {0;1} \right]} y = 5\) \( \Leftrightarrow y\left( 0 \right) + y\left( 1 \right) = 5\) \( \Leftrightarrow  - m + \dfrac{{1 - m}}{2} = 5 \Leftrightarrow m =  - 3.\)

- Nếu \(m =  - 1\) thì \(y = 1,\forall \,x \ne  - 1\) khi đó \(\mathop {\min }\limits_{\left[ {0;1} \right]} y + \mathop {\max }\limits_{\left[ {0;1} \right]} y = 2\) (không thỏa).

Vậy chỉ có \(m =  - 3\) thỏa mãn.

Đáp án B.

Copyright © 2021 HOCTAP247