Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích là \(V,\) khối chóp \(A'.BCC'B'\) có thể tích là \({V_1}.\) Tỉ số \(\dfrac{{{V_1}}}{V}\) bằng

Câu hỏi :

Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích là \(V,\) khối chóp \(A'.BCC'B'\) có thể tích là \({V_1}.\) Tỉ số \(\dfrac{{{V_1}}}{V}\) bằng

A. \(\dfrac{3}{4}.\)    

B. \(\dfrac{1}{2}.\)  

C. \(\dfrac{3}{5}.\)  

D. \(\dfrac{2}{3}.\) 

* Đáp án

D

* Hướng dẫn giải

Gọi \({V_2}\) là thể tích của khối tứ diện \(A'ABC\). Ta có \({V_1} + {V_2} = V \Leftrightarrow {V_1} = V - {V_2}\).

Mà \({V_2} = \dfrac{1}{3}d\left( {A',\left( {ABC} \right)} \right).S = \dfrac{V}{3}\); với \(S\) là diện tích của tam giác \(ABC\).

Vậy \({V_1} = \dfrac{{2V}}{3}\) . Do đó \(\dfrac{{{V_1}}}{V} = \dfrac{2}{3}\).

Đáp án D

Copyright © 2021 HOCTAP247