A. \(y' = \dfrac{{2{x^2} + 3}}{{x\left( {{x^2} + 1} \right)}} \cdot \)
B. \(y' = \dfrac{{{x^2} + 2}}{{x\left( {{x^2} + 1} \right)}} \cdot \)
C. \(y' = \dfrac{{2{x^2} + 1}}{{2{x^2} + 2}} \cdot \)
D. \(y' = \dfrac{{2{x^2} + 1}}{{x\left( {{x^2} + 1} \right)}} \cdot \)
D
Ta có \(0 < x \in \mathbb{R}\). Vậy \(y = \ln \left( {x\sqrt {{x^2} + 1} } \right) = \ln x + \dfrac{1}{2}\ln \left( {{x^2} + 1} \right)\)
\( \Rightarrow y' = \dfrac{1}{x} + \dfrac{1}{2}.\dfrac{{2x}}{{{x^2} + 1}} = \dfrac{{2{x^2} + 1}}{{x\left( {{x^2} + 1} \right)}}\)
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247