Cho hàm số \(f\left( x \right)\) có đạo hàm\(f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu như hình bên. Hàm số \(f\left( {3 - 2x} \right)\) đồng biến trên k...

Câu hỏi :

Cho hàm số \(f\left( x \right)\) có đạo hàm\(f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu như hình bên. Hàm số \(f\left( {3 - 2x} \right)\) đồng biến trên khoảng nào dưới đây ?

A. \(\left( {3;4} \right).\) 

B. \(\left( {2;3} \right).\) 

C. \(\left( { - \infty ; - 3} \right).\)  

D. \(\left( {0;2} \right).\)  

* Đáp án

A

* Hướng dẫn giải

Hàm số \(y = f\left( {3 - 2x} \right)\) có tập xác định là \(\mathbb{R}\), \(y' =  - 2f'\left( {3 - 2x} \right)\).

Vậy \(y' > 0 \Leftrightarrow f'\left( {3 - 2x} \right) < 0\)\( \Leftrightarrow \left[ \begin{array}{l}3 - 2x <  - 3\\ - 1 < 3 - 2x < 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 3\\1 < x < 2\end{array} \right.\)

Do đó hàm số \(y = f\left( {3 - 2x} \right)\) đồng biến trên \(\left( {3;4} \right)\).

Đáp án A

Copyright © 2021 HOCTAP247