Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 3a,AD = 4a\) và \(AC' = 10a\). Thể tích của khối hộp đã cho bằng

Câu hỏi :

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 3a,AD = 4a\) và \(AC' = 10a\). Thể tích của khối hộp đã cho bằng

A. \(48\sqrt 3 {a^3}\)   

B. \(60{a^3}\)  

C. \(20\sqrt 3 {a^3}\) 

D. \(60\sqrt 3 {a^3}\) 

* Đáp án

D

* Hướng dẫn giải

Do \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên ta có :

\(AB \bot BC\) \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} \) \( = \sqrt {{{\left( {3a} \right)}^2} + {{\left( {4a} \right)}^2}}  = 5a\)

\(CC' \bot \left( {ABCD} \right)\) \( \Rightarrow CC' \bot AC\) \( \Rightarrow CC' = \sqrt {AC{'^2} - A{C^2}} \) \( = \sqrt {{{\left( {10a} \right)}^2} - {{\left( {5a} \right)}^2}}  = 5\sqrt 3 a\)

Do đó thể tích của khối hộp trên là :  \(V = CC'.AB.AD = 3a.4a.5\sqrt 3 a \\= 60\sqrt 3 {a^3}\)

Chọn D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Gia Định

Số câu hỏi: 40

Copyright © 2021 HOCTAP247