Hình chóp tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu hỏi :

Hình chóp tam giác đều có bao nhiêu mặt phẳng đối xứng?

A.

B.

C.

D.

* Đáp án

A

* Hướng dẫn giải

Gọi hình chóp đã cho là \(S.ABC\)

\(S.ABC\) là hình chóp tam giác đều nên \(\left\{ \begin{array}{l}SA = SB = SC\\AC = BC = CA\end{array} \right.\)

Gọi \(M\) là trung điểm của \(BC\) thì \(\left\{ \begin{array}{l}AM \bot BC\\SM \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right)\)

Do đó \(B\) và \(C\) đối xứng với nhau qua mặt phẳng \(\left( {SAM} \right)\). Mặt phẳng \(\left( {SAM} \right)\) là mặt phẳng đối xứng của hình chóp.

Có tất cả 3 mặt phẳng như vậy. Các mặt phẳng đi qua \(S\) và trung tuyến của tam giác \(ABC\) là các mặt phẳng đối xứng.

Vậy hình chóp tam giác đều có 3 mặt phẳng đối xứng.

Chọn A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Gia Định

Số câu hỏi: 40

Copyright © 2021 HOCTAP247