Đồ thị hàm số \(y = \dfrac{{2x + 2}}{{{x^2} - 1}}\) có bao nhiêu đường tiệm cận?

Câu hỏi :

Đồ thị hàm số \(y = \dfrac{{2x + 2}}{{{x^2} - 1}}\) có bao nhiêu đường tiệm cận?

A. 3

B. 1

C. 2

D. 4

* Đáp án

C

* Hướng dẫn giải

Ta có:

\(y = \dfrac{{2x + 2}}{{{x^2} - 1}} = \dfrac{{2\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{2}{{x - 1}}\)

\(\mathop {\lim }\limits_{x \to  + \infty } y = 0\) nên đồ thị hàm số nhận đường thẳng \(y = 0\) là tiệm cận ngang.

\(\mathop {\lim }\limits_{x \to {1^ + }} y =  + \infty \) nên đồ thị hàm số nhân đường thẳng \(x = 1\) là tiệm cận đứng.

Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.

Chọn C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Gia Định

Số câu hỏi: 40

Copyright © 2021 HOCTAP247