Trong các hàm số như sau, hàm số nào đồng biến trên \(\mathbb{R}\)?

Câu hỏi :

Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?

A. \(y = {x^4} - 2{x^2} + 3\)

B. \(y = \dfrac{{x - 1}}{{2x + 3}}\) 

C. \(y = {x^3} + 4x - 5\) 

D. \(y = \sqrt {{x^2} - x + 1} \) 

* Đáp án

C

* Hướng dẫn giải

Hàm số \(y = {x^4} - 2{x^2} + 3\) có TXĐ : \(D = \mathbb{R}\) và \(y' = 4{x^3} - 4x = 4x\left( {x - 1} \right)\left( {x + 1} \right)\) nên hàm số có khoảng nghịch biến là \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\)

Hàm số \(y = \dfrac{{x - 1}}{{2x + 3}}\) không xác định khi \(x =  - \dfrac{3}{2}\) nên không thể đồng biến trên \(\mathbb{R}\)

Hàm số \(y = {x^3} + 4x - 5\) có TXĐ : \(D = \mathbb{R}\) và \(y' = 3{x^2} + 4 > 0,\forall x \in \mathbb{R}\) nên hàm số này đồng biến trên \(\mathbb{R}\)

Hàm số \(y = \sqrt {{x^2} - x + 1} \) có TXĐ :  \(D = \mathbb{R}\) và \(y' = \dfrac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}\) nên có khoảng đồng biến là \(\left( {\dfrac{1}{2}; + \infty } \right)\)

Chọn C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Mai Thúc Loan

Số câu hỏi: 40

Copyright © 2021 HOCTAP247