A. Hàm số đồng biến trên \(\left( {0; + \infty } \right)\).
B. Hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).
C. Đồ thị hàm số có một tiệm cận ngang.
D. Đồ thị hàm số có một đường tiệm cận đứng.
A. \(\left( {1;2} \right)\)
B. \(\left( { - \infty ;1} \right)\)
C. \(\left( {1; + \infty } \right)\)
D. \(\left( {0;1} \right)\)
A. \(216\pi \left( {c{m^3}} \right)\)
B. \(288\pi \left( {c{m^3}} \right)\)
C. \(432\pi \left( {c{m^3}} \right)\)
D. \(864\pi \left( {c{m^3}} \right)\)
A. Phương trình \(f\left( x \right) = 0\) có 2 nghiệm.
B. Hàm số có đúng một cực trị
C. Hàm số có giá trị nhỏ nhất bằng \( - 3\).
D. Hàm số có giá trị lớn nhất bằng \(1\).
A. \(\left( {2x - 3} \right){e^x}\)
B. \( - 3x{e^x}\)
C. \(\left( {{x^2} - x} \right){e^x}\)
D. \({x^2}{e^x}\)
A. \(\left( {2;0} \right)\)
B. \(\left( {0;2} \right)\)
C. \(\left( { - 2;6} \right)\)
D. \(\left( { - 2; - 18} \right)\)
A. 2
B. 3
C. 1
D. 0
A. \(y = {x^4} - 2{x^2} + 3\)
B. \(y = \dfrac{{x - 1}}{{2x + 3}}\)
C. \(y = {x^3} + 4x - 5\)
D. \(y = \sqrt {{x^2} - x + 1} \)
A. Hàm số nghịch biến trên \(\mathbb{R}\)
B. Hàm số nghịch biến trên \(\mathbb{R}\backslash \left\{ 2 \right\}\)
C. Hàm số nghịch biến trên \(\left( { - \infty ;2} \right);\left( {2; + \infty } \right)\)
D. Hàm số đồng biến trên \(\left( { - \infty ;2} \right);\left( {2; + \infty } \right)\)
A. 0
B. 2
C. 3
D. 1
A. \(y = - 1\)
B. \(x = - 1\)
C. \(y = 1\)
D. \(x = 1\)
A. \({\log _2}5 = - a\)
B. \({\log _2}25 + {\log _2}\sqrt 5 = \dfrac{{5a}}{2}\)
C. \({\log _5}4 = - \dfrac{2}{a}\)
D. \({\log _2}\dfrac{1}{5} + {\log _2}\dfrac{1}{{25}} = 3a\)
A. \(2 + {\log _a}b\)
B. \(\dfrac{1}{2} + \dfrac{1}{2}{\log _a}b\)
C. \(2 + 2{\log _a}b\)
D. \(\dfrac{1}{2} + {\log _a}b\)
A. \(D = \mathbb{R}\)
B. \(D = \left( {0;1} \right)\)
C. \(D = \left( {0; + \infty } \right)\)
D. \(D = \left( {1; + \infty } \right)\)
A. \(D = \left( {2; + \infty } \right)\)
B. \(D = \mathbb{R}\)
C. \(D = \left( { - \infty ;2} \right)\)
D. \(D = \mathbb{R}\backslash \left\{ 2 \right\}\)
A. \(2\pi {a^3}\)
B. \(\dfrac{{4\sqrt 5 \pi {a^3}}}{3}\)
C. \(\dfrac{{4\pi {a^3}}}{3}\)
D. \(\dfrac{{2\pi {a^3}}}{3}\)
A. \(V = \dfrac{{2{a^3}\sqrt 5 }}{2}\)
B. \(\dfrac{{{a^3}\sqrt 5 }}{3}\)
C. \(\dfrac{{2{a^3}\sqrt 5 }}{{15}}\)
D. \(\dfrac{{2{a^3}\sqrt 5 }}{3}\)
A. \(3M = 2C\)
B. \(C = M + 2\)
C. \(3C = 2M\)
D. \(M \ge C\)
A. \(2{a^3}\)
B. \(6{a^3}\)
C. \({a^3}\)
D. \(2{a^3}\sqrt 2 \)
A. \({V_1} = 2{V_2}\)
B. \({V_2} = 4{V_1}\)
C. \({V_1} = 4{V_2}\)
D. \({V_2} = 2{V_1}\)
A. \(x = \dfrac{{{a^3}}}{{{b^2}c}}\)
B. \(x = \dfrac{{{a^3}c}}{{{b^2}}}\)
C. \(x = {a^3} - {b^2} + c\)
D. \(x = \dfrac{{a{c^3}}}{{{b^2}}}\)
A. \({a^5} = {b^3}\)
B. \(3a = 5b\)
C. \({a^3} = {b^5}\)
D. \({a^2} = {b^3}\)
A. 47 ngàn đồng
B. 46 ngàn đồng
C. 48 ngàn đồng
D. 49 ngàn đồng
A. \(2\left( s \right)\)
B. \(12\left( s \right)\)
C. \(6\left( s \right)\)
D. \(4\left( s \right)\)
A. \(m \ge - 2\)
B. \(m < - 2\)
C. \(m \in \mathbb{R}\)
D. \(m \le - 2\)
A. \(20\)
B. \(10\)
C. \(\dfrac{{16\sqrt {11} }}{3}\)
D. \(\dfrac{{8\sqrt {11} }}{3}\)
A. \(a < 0,c < 0,d > 0\)
B. \(a < 0,c < 0,d < 0\)
C. \(a > 0,c > 0,d > 0\)
D. \(a < 0,c > 0,d > 0\)
A. \(m \le 0\)
B. \(m > \dfrac{1}{2}\)
C. \(m \le 1\)
D. \(m > 0\)
A. \(l = 60\)
B. \(l = 16\)
C. \(l = 24\)
D. \(l = 8\)
A. \({a^2}\sqrt 2 \)
B. \(8\pi {a^2}\)
C. \(2\pi {a^2}\)
D. \(2{a^2}\)
A. \(\dfrac{{15\pi {a^3}}}{4}\)
B. \(\dfrac{{5\pi {a^3}}}{4}\)
C. \(15\pi {a^3}\)
D. \(5\pi {a^3}\)
A. \(\dfrac{9}{2}\)
B. \(9\)
C. \(1\)
D. \(8\)
A. \(\dfrac{{3{a^3}}}{8}\)
B. \(\dfrac{{{a^3}\sqrt 3 }}{8}\)
C. \(\dfrac{{3{a^3}}}{{24}}\)
D. \(\dfrac{{{a^3}\sqrt 3 }}{{24}}\)
A. \(4\)
B. \(2\)
C. \(3\)
D. \(0\)
A. \(f'\left( x \right) = \dfrac{{\left( {{x^{2019}} - 2020x} \right).\ln 10}}{{2019{x^{2018}} - 2020}}\)
B. \(f'\left( x \right) = \dfrac{{{x^{2019}} - 2020x}}{{\left( {2019{x^{2018}} - 2020} \right).\ln 2018}}\)
C. \(f'\left( x \right) = \dfrac{{\left( {2019{x^{2018}} - 2020} \right)\log e}}{{{x^{2019}} - 2020x}}\)
D. \(f'\left( x \right) = \dfrac{{\left( {2019{x^{2018}} - 2020} \right)\ln 10}}{{{x^{2019}} - 2020x}}\)
A. \(\dfrac{{{a^3}\sqrt 7 }}{7}\)
B. \(\dfrac{{{a^3}\sqrt 7 }}{{14}}\)
C. \(\dfrac{{3{a^3}\sqrt 7 }}{7}\)
D. \(\dfrac{{3{a^3}\sqrt 7 }}{{14}}\)
A. \(\dfrac{{4{a^3}\sqrt 7 }}{3}\)
B. \(\dfrac{{{a^3}\sqrt 7 }}{3}\)
C. \(\dfrac{{2{a^3}\sqrt {17} }}{3}\)
D. \(\dfrac{{2{a^3}\sqrt {24} }}{3}\)
A. \(S = {a^2}\sqrt 3 \)
B. \(S = 6{a^2}\)
C. \(S = 4{a^2}\)
D. \(S = 24{a^2}\)
A. \(\dfrac{{9{a^3}}}{8}\)
B. \(\dfrac{{{a^3}\sqrt 6 }}{8}\)
C. \(\dfrac{{{a^3}\sqrt 6 }}{6}\)
D. \(\dfrac{{3{a^3}}}{8}\)
A. \(m \in \left( {0;8} \right)\)
B. \(m \in \left( {0;2} \right)\)
C. \(m \in \left( { - \infty ;0} \right) \cup \left( {8; + \infty } \right)\)
D. \(m \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247