Cho các hàm số \(y = {a^x}\) và \(y = {b^x}\) với \(a,b\) là những số thực dương khác 1 có đồ thị như hình vẽ. Đường thẳng \(y = 3\) cắt trục tung, đồ thị hàm số \(y = {a^x}\) và \...

Câu hỏi :

Cho các hàm số \(y = {a^x}\) và \(y = {b^x}\) với \(a,b\) là những số thực dương khác 1 có đồ thị như hình vẽ. Đường thẳng \(y = 3\) cắt trục tung, đồ thị hàm số \(y = {a^x}\) và \(y = {b^x}\) lần lượt tại \(H,M,N\). Biết rằng \(2HM = 3MN\), khẳng định nào sau đây đúng?

A. \({a^5} = {b^3}\)   

B. \(3a = 5b\) 

C. \({a^3} = {b^5}\)     

D. \({a^2} = {b^3}\)  

* Đáp án

C

* Hướng dẫn giải

Đường thẳng \(y = 3\) cắt trục tung, đồ thị các hàm số \(y = {a^x}\) và \(y = {b^x}\) lần lượt tại \(H,M,N\) nên ta có :

\(\left\{ \begin{array}{l}{a^{HM}} = 3\\{b^{HN}} = 3\end{array} \right. \Rightarrow {a^{HM}} = {b^{HN}}\)

Theo giả thiết,    \(2HM = 3MN \Leftrightarrow HM = \dfrac{3}{2}MN \\\Rightarrow HM = \dfrac{3}{5}HN\)

Do đó   \({a^{HM}} = {b^{HN}} \Leftrightarrow {a^{HM}} = {b^{\dfrac{5}{3}HN}}\\ \Leftrightarrow a = {b^{\dfrac{5}{3}}} \Leftrightarrow {a^3} = {b^5}\)

Chọn C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Mai Thúc Loan

Số câu hỏi: 40

Copyright © 2021 HOCTAP247