Tìm \(m\) để hàm số \(f\left( x \right) = \left( {m + 2} \right)\dfrac{{{x^3}}}{3} - \left( {m + 2} \right){x^2} + \left( {m - 8} \right)x + {m^2} - 1\) nghịch biến trên \(\mathb...

Câu hỏi :

Tìm \(m\) để hàm số  \(f\left( x \right) = \left( {m + 2} \right)\dfrac{{{x^3}}}{3} - \left( {m + 2} \right){x^2} + \left( {m - 8} \right)x + {m^2} - 1\)  nghịch biến trên \(\mathbb{R}\) 

A. \(m \ge  - 2\)    

B. \(m <  - 2\) 

C. \(m \in \mathbb{R}\)  

D. \(m \le  - 2\)  

* Đáp án

D

* Hướng dẫn giải

\(f\left( x \right) = \left( {m + 2} \right)\dfrac{{{x^3}}}{3} - \left( {m + 2} \right){x^2} + \left( {m - 8} \right)x + {m^2} - 1\)

Hàm số đã cho liên tục và xác định trên \(\mathbb{R}\).

Nếu \(m =  - 2\) thì hàm số trên trở thành \(f\left( x \right) =  - 10x + 3\), hàm số này nghịch biến trên \(\mathbb{R}\) nên \(m =  - 2\) thỏa mãn.

Nếu \(m \ne  - 2\), ta có :

\(\begin{array}{l}f\left( x \right) = \left( {m + 2} \right)\dfrac{{{x^3}}}{3} - \left( {m + 2} \right){x^2} + \left( {m - 8} \right)x + {m^2} - 1\\ \Rightarrow f'\left( x \right) = \left( {m + 2} \right){x^2} - 2\left( {m + 2} \right)x + \left( {m - 8} \right)\end{array}\)

Hàm số đã cho nghịch biến trên \(\mathbb{R}\) khi và chỉ khi

\(\begin{array}{l}f'\left( x \right) \le 0,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}m + 2 < 0\\\Delta ' \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m <  - 2\\{\left( {m + 2} \right)^2} - \left( {m + 2} \right)\left( {m - 8} \right) \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m <  - 2\\\left( {m + 2} \right).10 \le 0\end{array} \right. \Rightarrow m <  - 2\end{array}\)

Vậy \(m \le  - 2\) thì hàm số đã cho nghịch biến trên \(\mathbb{R}\).

Chọn D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Mai Thúc Loan

Số câu hỏi: 40

Copyright © 2021 HOCTAP247