Tìm tất cả các giá trị thực của \(m\) để đường thẳng \(d:y = mx + 2\) cắt đồ thị \(\left( C \right):y = \dfrac{{x + 1}}{x}\) tại 2 điểm thuộc 2 nhánh của đồ thị \(\left( C \right)\...

Câu hỏi :

Tìm tất cả các giá trị thực của \(m\) để đường thẳng \(d:y = mx + 2\) cắt đồ thị \(\left( C \right):y = \dfrac{{x + 1}}{x}\) tại 2 điểm thuộc 2 nhánh của đồ thị \(\left( C \right)\) 

A. \(m \le 0\)      

B. \(m > \dfrac{1}{2}\) 

C. \(m \le 1\)      

D. \(m > 0\)  

* Đáp án

D

* Hướng dẫn giải

TXĐ: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)

Phương trình hoành độ giao điểm của đường thẳng \(d\) và đồ thị \(\left( C \right)\) là:

\(mx + 2 = \dfrac{{x + 1}}{x}\) \( \Leftrightarrow \left( {mx + 2} \right)x - \left( {x + 1} \right) = 0\) \( \Leftrightarrow m{x^2} + x - 1 = 0\)     (1)

Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại 2 điểm phân biệt khi và chỉ khi phương trình \(\left( 1 \right)\) có 2 nghiệm phân biệt khác 0

Suy ra  \(\left\{ \begin{array}{l}\Delta  > 0\\m{.0^2} + 0 - 1 \ne 0\\m \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}1 + 4m > 0\\ - 1 \ne 0\\m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >  - \dfrac{1}{4}\\m \ne 0\end{array} \right.\)    (2)

Đồ thị hàm số \(y = \dfrac{{x + 1}}{x}\) nhận đường thẳng \(x = 0\) là tiệm cận đứng.

Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại 2 điểm phân biệt thuộc hai nhánh của đồ thị \(\left( C \right)\) tức là nằm về 2 phía của tiệm cận đứng. Do đó \({x_1} < 0 < {x_2}\)

Suy ra \({x_1}.{x_2} < 0 \Leftrightarrow \dfrac{{ - 1}}{m} < 0 \Leftrightarrow m > 0\) (3)

Kết hợp điều kiện (2) và (3) suy ra \(m > 0\) thì đường thẳng \(d\) cắt đồ thị \(\left( C \right)\) tại 2 điểm nằm về 2 phía của đồ thị \(\left( C \right)\)

Chọn D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Mai Thúc Loan

Số câu hỏi: 40

Copyright © 2021 HOCTAP247