Cho tứ diện \(ABCD\) có \(\Delta ABC\) là tam giác đều cạnh bằng \(a\). \(\Delta BCD\) vuông cân tại \(D\) và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\). Tính theo...

Câu hỏi :

Cho tứ diện \(ABCD\) có \(\Delta ABC\) là tam giác đều cạnh bằng \(a\). \(\Delta BCD\) vuông cân tại \(D\) và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\). Tính theo \(a\) thể tích của tứ diện \(ABCD\). 

A. \(\dfrac{{3{a^3}}}{8}\)        

B. \(\dfrac{{{a^3}\sqrt 3 }}{8}\) 

C. \(\dfrac{{3{a^3}}}{{24}}\)   

D. \(\dfrac{{{a^3}\sqrt 3 }}{{24}}\) 

* Đáp án

D

* Hướng dẫn giải

Gọi \(H\) là trung điểm \(BC\). Tam giác \(BCD\) vuông cân tại \(D\) nên \(DH \bot BC\)

Ta có:

\(\left\{ \begin{array}{l}\left( {BCD} \right) \bot \left( {ABC} \right)\\\left( {BCD} \right) \cap \left( {ABC} \right) = BC\\DH \bot BC\\DH \subset \left( {DBC} \right)\end{array} \right. \Rightarrow DH \bot \left( {ABC} \right)\)

Tam giác \(DBC\) vuông tại \(D\) nên đường trung tuyến \(DH = \dfrac{1}{2}BC = \dfrac{a}{2}\)

Tam giác \(ABC\) là tam giác đều cạnh \(a\) nên \({S_{\Delta ABC}} = \dfrac{{\sqrt 3 }}{4}A{B^2} = \dfrac{{\sqrt 3 }}{4}{a^2}\)

Vậy thể tích của tứ diện \(ABCD\) là 

Chọn D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Mai Thúc Loan

Số câu hỏi: 40

Copyright © 2021 HOCTAP247